Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct 18:4:23.
doi: 10.1186/1471-2210-4-23.

Serum adiponectin as a biomarker for in vivo PPARgamma activation and PPARgamma agonist-induced efficacy on insulin sensitization/lipid lowering in rats

Affiliations

Serum adiponectin as a biomarker for in vivo PPARgamma activation and PPARgamma agonist-induced efficacy on insulin sensitization/lipid lowering in rats

Baichun Yang et al. BMC Pharmacol. .

Abstract

Background: PPARgamma agonists ameliorate insulin resistance and dyslipidemia in type 2 diabetic patients. Adiponectin possesses insulin sensitizing properties, and predicts insulin sensitivity of both glucose and lipid metabolism. In diet-induced insulin resistant rats and ZDF rats, the current studies determined the correlation between PPARgamma agonist-upregulated fatty acid binding protein(FABP3) mRNA in adipose tissue and PPARgamma agonist-elevated serum adiponectin, and the correlation between PPARgamma agonist-elevated serum adiponectin and PPARgamma agonist-mediated efficacy in insulin sensitization and lipid lowering.

Results: Parallel groups of SD rats were fed a high fat/sucrose (HF) diet for 4 weeks. These rats were orally treated for the later 2 weeks with vehicle, either PPARgamma agonist GI262570 (0.2-100 mg/kg, Q.D.), or GW347845 (3 mg/kg, B.I.D). Rats on HF diet showed significant increases in postprandial serum triglycerides, free fatty acids (FFA), insulin, and area under curve (AUC) of serum insulin during an oral glucose tolerance test, but showed no change in serum glucose, adiponectin, and glucose AUC. Treatment with GI262570 dose-dependently upregulated adipose FABP3 mRNA, and increased serum adiponectin. There was a position correlation between adipose FABP3 mRNA and serum adiponectin (r = 0.7350, p < 0.01). GI262570 dose-dependently decreased the diet-induced elevations in triglycerides, FFA, insulin, and insulin AUC. Treatment with GW347845 had similar effects on serum adiponectin and the diet-induced elevations. There were negative correlations for adiponectin versus triglycerides, FFA, insulin, and insulin AUC (For GI262570, r = -0.7486, -0.4581, -0.4379, and -0.3258 respectively, all p < 0.05. For GW347845, r = -0.6370, -0.6877, -0.5512, and -0.3812 respectively, all p < 0.05). In ZDF rats treated with PPARgamma agonists pioglitazone (3-30 mg/kg, B.I.D.) or GW347845 (3 mg/kg, B.I.D.), there were also negative correlations for serum adiponectin versus glucose, triglycerides, FFA (for pioglitazone, r = -0.7005, -0.8603, and -0.9288 respectively; for GW347845, r = -0.9721, -0.8483, and -0.9453 respectively, all p < 0.01).

Conclusions: This study demonstrated that (a) PPARgamma agonists improved insulin sensitivity and ameliorated dyslipidemia in HF fed rats and ZDF rats, which were correlated with serum adiponectin; (b) Serum adiponectin was positively correlated with adipose FABP3 mRNA in GI262570-treated rats. These data suggest that serum adiponectin can serve as a biomarker for both in vivo PPARgamma activation and PPARgamma agonist-induced efficacy on insulin resistance and dyslipidemia in rats.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Efeects of PPARγ agonist GI262570 on serum adiponectin level (a), adipose FABP3 mRNA level (b), and the correlation between serum adiponectin and adipose FABP3 mRNA. SD rats were on HF diet for 4 weeks. GI262570 was oral dosed for the later 2 weeks. Mean ± SEM. N = 5–8 in each group. *p < 0.05 vs vehicle. **p < 0.01 vs vehicle.
Figure 2
Figure 2
Effects of PPARγ agonist GI262570 on serum insulin, triglycerides, free fatty acids, and insulin AUC during OGTT. SD rats were on HF diet for 4 weeks. GI262570 was oral dosed for the later 2 weeks. Mean ± SEM. N = 7–9 in each group.
Figure 3
Figure 3
Correlation between PPARγ agonist GI262570 (0.2–100 mg/kg)-elevated serum adiponectin and GI262570-decreased serum insulin, triglycerides, free fatty acids, and insulin AUC during OGTT in HF fed SD rats.

Similar articles

Cited by

References

    1. Brown KK, Henke BH, Blanchard SG, Cobb JE, Mook R, Kaldor I, Kliewer SA, Lehmann JM, Lenhard JM, Harrington WW, Novak PJ, Faison W, Binz JG, Hashim MA, Oliver WO, Brown HR, Parks DJ, Plunket KD, Tong W, Menius JA, Adkison K, Noble SA, Willson TM. A novel N-aryl tyrosine activator of peroxisome proliferator-activated receptor-gamma reverses the diabetic phenotype of the Zucker diabetic fatty rat. Diabetes. 1999;48:1415–1424. - PubMed
    1. Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs: From orphan receptors to drug discovery. J Medicinal Chem. 2000;43:527–550. doi: 10.1021/jm990554g. - DOI - PubMed
    1. Virtanen KA, Hallsten K, Parkkola R, Janatuinen T, Lonnqvist F, Viljanen T, Ronnemaa T, Knuuti J, Huupponen R, Lonnroth P, Nuutila P. Differential effects of rosiglitazone and metformin on adipose tissue distribution and glucose uptake in type 2 diabetes subjects. Diabetes. 2003;52:283–290. - PubMed
    1. Hirose H, Kawai T, Yamamoto Y, Taniyama M, Tomita M, Matsubara K, Okazaki Y, Ishii T, Oguma Y, Takei I, Saruta T. Effects of pioglitazone on metabolic parameters, body fat distribution, and serum adiponectin levels in Japanese male patients with type 2 diabetes. Metabolism. 2002;51:314–317. doi: 10.1053/meta.2002.30506. - DOI - PubMed
    1. Pavo I, Jermendy G, Varkonyi TT, Kerenyi Z, Gyimesi A, Shoustov S, Shestakova M, Herz M, Johns D, Schluchter BJ, Festa A, Tan MH. Effect of pioglitazone compared with metformin on glycemic control and indicators of insulin sensitivity in recently diagnosed patients with type 2 diabetes. J Clin Endocrino Metabolism. 2003;88:1637–1645. doi: 10.1210/jc.2002-021786. - DOI - PubMed

MeSH terms