Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec 31;279(53):55493-8.
doi: 10.1074/jbc.M409770200. Epub 2004 Oct 18.

Targeted disruption of MAIL, a nuclear IkappaB protein, leads to severe atopic dermatitis-like disease

Affiliations
Free article

Targeted disruption of MAIL, a nuclear IkappaB protein, leads to severe atopic dermatitis-like disease

Takahiko Shiina et al. J Biol Chem. .
Free article

Abstract

MAIL (molecule-possessing ankyrin repeats induced by lipopolysaccharide) is a nuclear IkappaB protein that is also termed interleukin-1-inducible nuclear ankyrin repeat protein or inhibitor of nuclear factor kappaB (IkappaB) zeta. In this study, we generated Mail-/- mice to investigate the roles of MAIL in whole organisms. Mail-/- mice grew normally until 4-8 weeks after birth, when they began to develop lesions in the skin of the periocular region, face, and neck. MAIL mRNA and protein were constitutively expressed in the skin of wild type controls, especially in the keratinocytes. Serum IgE was higher in Mail-/- mice than in normal. Histopathological analysis indicated that the Mail-/- skin lesions appeared to be atopic dermatitis (AD) eczema with inflammatory cell infiltration. In addition, markedly elevated expression of some chemokines such as thymus and activation-regulated chemokine was detected in the Mail-/- skin lesions, similar to that observed in the skin of patients with AD. In Mail-/- mice, MAIL-deficient keratinocytes might be activated to produce chemokines and induce intraepidermal filtration of inflammatory cells, resulting in the onset of the AD-like disease. These findings suggest that MAIL is an essential molecule for homeostatic regulation of skin immunity. The Mail-/- mouse is a valuable new animal model for research on AD.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources