Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec;59(4):242-8.
doi: 10.1002/cm.20037.

Cellular stiffness response to external deformation: tensional homeostasis in a single fibroblast

Affiliations

Cellular stiffness response to external deformation: tensional homeostasis in a single fibroblast

Takeomi Mizutani et al. Cell Motil Cytoskeleton. 2004 Dec.

Abstract

Stiffness responses of fibroblasts were measured by scanning probe microscopy, following elongation or compression by deformation of an elastic substrate by 8%. The cellular stiffness, reflecting intracellular tension acting along stress fibers, decreased or increased instantly in response to the elongating or compressing stimuli, respectively. After this rapid change, the fibroblasts gradually recovered to their initial stiffness during the following 2 h, and then stabilized. The cells did not show conspicuous changes in shape after the 8% deformation during the SPM measurements. Fluorescence examination for GFP-actin demonstrated that the structure of the stress fibers was not altered noticeably by this small degree of deformation. Treatment with Y-27632, to inhibit myosin phosphorylation and abrogate cellular contractility, eliminated the change in stiffness after the mechanical elongation. These results indicate that fibroblasts possess a mechanism that regulates intracellular tension along stress fibers to maintain the cellular stiffness in a constant equilibrium state.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources