Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct 27;126(42):13794-807.
doi: 10.1021/ja046753t.

Preparation and molecular and electronic structures of iron(0) dinitrogen and silane complexes and their application to catalytic hydrogenation and hydrosilation

Affiliations

Preparation and molecular and electronic structures of iron(0) dinitrogen and silane complexes and their application to catalytic hydrogenation and hydrosilation

Suzanne C Bart et al. J Am Chem Soc. .

Abstract

Reduction of the five-coordinate iron(II) dihalide complexes (iPrPDI)FeX2 (iPrPDI = ((2,6-CHMe2)2C6H3N=CMe)2C5H3N; X = Cl, Br) with sodium amalgam under 1 atm of dinitrogen afforded the square pyramidal, high spin iron(0) bis(dinitrogen) complex (iPrPDI)Fe(N2)2. In solution, (iPrPDI)Fe(N2)2 loses 1 equiv of N2 to afford the mono(dinitrogen) adduct (iPrPDI)Fe(N2). Both dinitrogen compounds serve as effective precatalysts for the hydrogenation and hydrosilation of olefins and alkynes. Effecient catalytic reactions are observed with low catalyst loadings (< or = 0.3 mol %) at ambient temperature in nonpolar media. The catalytic hydrosilations are selective in forming the anti-Markovnikov product. Structural characterization of a high spin iron(0) alkyne and a bis(silane) sigma-complex has also been accomplished and in combination with isotopic labeling studies provides insight into the mechanism of both catalytic C-H and catalytic C-Si bond formation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources