Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Nov;32(Pt 5):694-6.
doi: 10.1042/BST0320694.

Towards bridging the gap from molecular forces to the movement of organisms

Affiliations
Review

Towards bridging the gap from molecular forces to the movement of organisms

B G Nielsen. Biochem Soc Trans. 2004 Nov.

Abstract

Muscles are responsible for generating the forces required for the movement of multicellular organisms. Microscopically, these forces arise as a consequence of motor proteins (myosin) pulling and sliding along actin filaments. Current knowledge states that the molecular forces between actin and myosin are linear in nature [Huxley and Simmons (1971) Nature (London) 233, 533-538] and that the physiologically observed non-linearities (e.g. Hill's force-velocity relationship) are a consequence of non-linearities in the attachment/detachment ratios. However, this view has been disputed recently [Nielsen (2002) J. Theor. Biol. 219, 99-119], inspired by results from protein pulling experiments showing that proteins often have non-linear entropic force-extension profiles. Irrespective of the case, the present study aims at integrating such basic force-producing properties into large-scale simulations of muscle, which may accommodate macroscopic properties of muscles, e.g. the catch-like effect, the Henneman principle and accurate twitch force and motor unit size distributions. As a test of the underlying principles, a model of the biceps caput breve muscle is presented and compared with experimental data.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources