Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov 1;173(9):5766-75.
doi: 10.4049/jimmunol.173.9.5766.

Selective blockade of NF-kappa B activity in airway immune cells inhibits the effector phase of experimental asthma

Affiliations

Selective blockade of NF-kappa B activity in airway immune cells inhibits the effector phase of experimental asthma

Christophe Desmet et al. J Immunol. .

Abstract

Knockout mice studies have revealed that NF-kappaB plays a critical role in Th2 cell differentiation and is therefore required for induction of allergic airway inflammation. However, the questions of whether NF-kappaB also plays a role in the effector phase of airway allergy and whether inhibiting NF-kappaB could have therapeutic value in the treatment of established asthma remain unanswered. To address these issues, we have assessed in OVA-sensitized wild-type mice the effects of selectively antagonizing NF-kappaB activity in the lungs during OVA challenge. Intratracheal administration of NF-kappaB decoy oligodeoxynucleotides to OVA-sensitized mice led to efficient nuclear transfection of airway immune cells, but not constitutive lung cells and draining lymph node cells, associated with abrogation of NF-kappaB activity in the airways upon OVA provocation. NF-kappaB inhibition was associated with strong attenuation of allergic lung inflammation, airway hyperresponsiveness, and local production of mucus, IL-5, IL-13, and eotaxin. IL-4 and OVA-specific IgE and IgG1 production was not reduced. This study demonstrates for the first time that activation of NF-kappaB in local immune cells is critically involved in the effector phase of allergic airway disease and that specific NF-kappaB inhibition in the lungs has therapeutic potential in the control of pulmonary allergy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms