Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar;288(3):C669-76.
doi: 10.1152/ajpcell.00191.2004. Epub 2004 Oct 20.

Calmodulin interactions with IQ peptides from voltage-dependent calcium channels

Affiliations
Free article

Calmodulin interactions with IQ peptides from voltage-dependent calcium channels

D J Black et al. Am J Physiol Cell Physiol. 2005 Mar.
Free article

Abstract

Calmodulin (CaM) functions as a Ca(2+) sensor for inactivation and, in some cases, facilitation of a variety of voltage-dependent Ca(2+) channels. A crucial determinant for CaM binding to these channels is the IQ motif in the COOH-terminal tail of the channel-forming subunit. The binding of CaM to IQ peptides from Lc-, P/Q-, and R-type, but not N-type, voltage-dependent Ca(2+) channels increases the Ca(2+) affinity of both lobes of CaM, producing similar N- and C-lobe Ca(2+) affinities. Ca(2+) associates with and dissociates from the N-lobe much more rapidly than the C-lobe when CaM is bound to the IQ peptides. Compared with the other IQ peptides, CaM-bound Lc-IQ has the highest Ca(2+) affinity and the most rapid rates of Ca(2+) association at both lobes, which is likely to make Ca(2+) binding to CaM, bound to this channel, less sensitive than other channels to intracellular Ca(2+) buffers. These kinetic differences in Ca(2+) binding to the lobes of CaM when bound to the different IQ motifs may explain both the ability of CaM to perform multiple functions in these channels and the differences in CaM regulation of the different voltage-dependent Ca(2+) channels.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources