Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Mar;93(3):1393-405.
doi: 10.1152/jn.00789.2004. Epub 2004 Oct 20.

Syntaxin-1A binds to and modulates the Slo calcium-activated potassium channel via an interaction that excludes syntaxin binding to calcium channels

Affiliations
Free article
Comparative Study

Syntaxin-1A binds to and modulates the Slo calcium-activated potassium channel via an interaction that excludes syntaxin binding to calcium channels

Susan M Cibulsky et al. J Neurophysiol. 2005 Mar.
Free article

Abstract

From its position in presynaptic nerve terminals, the large conductance Ca(2+)-activated K+ channel, Slo, regulates neurotransmitter release. Several other ion channels known to control neurotransmitter release have been implicated in physical interactions with the neurotransmitter release machinery. For example, the Ca(v)2.2 (N-type) Ca2+ channel binds to and is modulated by syntaxin-1A and SNAP-25. Furthermore, a close juxtaposition of Slo and Ca(v)2.2 is presumed to be necessary for functional coupling between the two channels, which has been shown in neurons. We report that Slo exhibits a strong association with syntaxin-1A. Robust co-immunoprecipitation of Slo and syntaxin-1A occurs from transfected HEK293 cells as well as from brain. However, despite this strong interaction and the known association between syntaxin-1A and the II-III loop of Ca(v)2.2, these three proteins do not co-immunoprecipitate in a trimeric complex from transfected HEK293 cells. The Slo-syntaxin-1A co-immunoprecipitation is not significantly influenced by [Ca2+]. Multiple relatively weak interactions may sum up to a tight physical coupling of full-length Slo with syntaxin-1A: the C-terminal tail and the S0-S1 loop of Slo each co-immunoprecipitate with syntaxin-1A. The presence of syntaxin-1A leads to reduced Slo channel activity due to an increased V(1/2) for activation in 100 nM, 1 muM, and 10 microM Ca2+, reduced voltage-sensitivity in 1 microM Ca2+, and slower rates of activation in 10 microM Ca2+. Potential physiological consequences of the interaction between Slo and syntaxin-1A include enhanced excitability through modulation of Slo channel activity and reduced neurotransmitter release due to disruption of syntaxin-1A binding to the Ca(v)2.2 II-III loop.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources