Syntaxin-1A binds to and modulates the Slo calcium-activated potassium channel via an interaction that excludes syntaxin binding to calcium channels
- PMID: 15496493
- DOI: 10.1152/jn.00789.2004
Syntaxin-1A binds to and modulates the Slo calcium-activated potassium channel via an interaction that excludes syntaxin binding to calcium channels
Abstract
From its position in presynaptic nerve terminals, the large conductance Ca(2+)-activated K+ channel, Slo, regulates neurotransmitter release. Several other ion channels known to control neurotransmitter release have been implicated in physical interactions with the neurotransmitter release machinery. For example, the Ca(v)2.2 (N-type) Ca2+ channel binds to and is modulated by syntaxin-1A and SNAP-25. Furthermore, a close juxtaposition of Slo and Ca(v)2.2 is presumed to be necessary for functional coupling between the two channels, which has been shown in neurons. We report that Slo exhibits a strong association with syntaxin-1A. Robust co-immunoprecipitation of Slo and syntaxin-1A occurs from transfected HEK293 cells as well as from brain. However, despite this strong interaction and the known association between syntaxin-1A and the II-III loop of Ca(v)2.2, these three proteins do not co-immunoprecipitate in a trimeric complex from transfected HEK293 cells. The Slo-syntaxin-1A co-immunoprecipitation is not significantly influenced by [Ca2+]. Multiple relatively weak interactions may sum up to a tight physical coupling of full-length Slo with syntaxin-1A: the C-terminal tail and the S0-S1 loop of Slo each co-immunoprecipitate with syntaxin-1A. The presence of syntaxin-1A leads to reduced Slo channel activity due to an increased V(1/2) for activation in 100 nM, 1 muM, and 10 microM Ca2+, reduced voltage-sensitivity in 1 microM Ca2+, and slower rates of activation in 10 microM Ca2+. Potential physiological consequences of the interaction between Slo and syntaxin-1A include enhanced excitability through modulation of Slo channel activity and reduced neurotransmitter release due to disruption of syntaxin-1A binding to the Ca(v)2.2 II-III loop.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous