Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan 15;72(1):206-14.
doi: 10.1002/jbm.b.30132.

Subsurface microstructure of metal-on-metal hip joints and its relationship to wear particle generation

Affiliations

Subsurface microstructure of metal-on-metal hip joints and its relationship to wear particle generation

R Büscher et al. J Biomed Mater Res B Appl Biomater. .

Abstract

To control and minimize wear of metal-on-metal hip joints it is essential to understand the mechanisms of debris generation. In vivo, mainly nanosize globular and needle-shaped particles are found. These can neither stem from the action of abrasion nor from tribochemical reactions. In this study the acting wear mechanisms have been first identified on the surface by means of scanning electron microscopy (SEM). Afterwards, the microstructures of the subsurface regions of explants have been investigated using a transmission electron microscope (TEM). Observation of the subsurface gave additional insight about the microstructural changes of cobalt-base alloys subjected to wear. At some distance from the surface, a network of stacking faults and hexagonal epsilon-martensite was found strengthening the bulk material. This microstructure changed into a nanocrystalline type moving closer towards the surface. A comparison of in vivo debris size and grain size of the surface suggests that the globular wear particles result from torn off nanocrystals, while the needle shaped particles are generated by fractured epsilon-martensite. Identified cracks, propagating through the nanocrystalline layer, further support these findings. Thus, it is suggested that the dominating mechanism of particle generation for metal-on-metal joints is surface fatigue within a nanocrystalline surface layer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources