Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov 15;190(10):1783-92.
doi: 10.1086/425078. Epub 2004 Oct 18.

Rare, highly pyrimethamine-resistant alleles of the Plasmodium falciparum dihydrofolate reductase gene from 5 African sites

Affiliations
Free article

Rare, highly pyrimethamine-resistant alleles of the Plasmodium falciparum dihydrofolate reductase gene from 5 African sites

Sarah J Bates et al. J Infect Dis. .
Free article

Abstract

In eastern and southern Africa, there has been a rapid increase in the prevalence of alleles with mutations in the Plasmodium falciparum dihydrofolate reductase gene (dhfr) associated with increased risk of clinical failure of sulfadoxine-pyrimethamine (S/P). Molecular methods for surveillance of these mutations are now widespread, but the usual analysis detects only the most prevalent allele in a polyclonal sample. We used a yeast-expression system to identify rare, highly pyrimethamine-resistant alleles of dhfr in isolates from 5 African countries--Kenya, Tanzania, Malawi, Gabon, and Nigeria. Only the isolates from Nigeria yielded significant numbers of novel resistant alleles, and only 1 of the alleles from any location showed a >3-fold increase in resistance to S/P or to chlorproguanil-dapsone. Overall, these results suggest that dhfr alleles that confer high levels of resistance to antifolates are rare, even in eastern and southern Africa, where pyrimethamine has been intensively used.

PubMed Disclaimer

Publication types

MeSH terms