Wavelets and functional magnetic resonance imaging of the human brain
- PMID: 15501094
- DOI: 10.1016/j.neuroimage.2004.07.012
Wavelets and functional magnetic resonance imaging of the human brain
Abstract
The discrete wavelet transform (DWT) is widely used for multiresolution analysis and decorrelation or "whitening" of nonstationary time series and spatial processes. Wavelets are naturally appropriate for analysis of biological data, such as functional magnetic resonance images of the human brain, which often demonstrate scale invariant or fractal properties. We provide a brief formal introduction to key properties of the DWT and review the growing literature on its application to fMRI. We focus on three applications in particular: (i) wavelet coefficient resampling or "wavestrapping" of 1-D time series, 2- to 3-D spatial maps and 4-D spatiotemporal processes; (ii) wavelet-based estimators for signal and noise parameters of time series regression models assuming the errors are fractional Gaussian noise (fGn); and (iii) wavelet shrinkage in frequentist and Bayesian frameworks to support multiresolution hypothesis testing on spatially extended statistic maps. We conclude that the wavelet domain is a rich source of new concepts and techniques to enhance the power of statistical analysis of human fMRI data.
Similar articles
-
A comparative evaluation of wavelet-based methods for hypothesis testing of brain activation maps.Neuroimage. 2004 Nov;23(3):1112-28. doi: 10.1016/j.neuroimage.2004.07.034. Neuroimage. 2004. PMID: 15528111
-
Fractional Gaussian noise, functional MRI and Alzheimer's disease.Neuroimage. 2005 Mar;25(1):141-58. doi: 10.1016/j.neuroimage.2004.10.044. Epub 2005 Jan 21. Neuroimage. 2005. PMID: 15734351
-
Wavelets and statistical analysis of functional magnetic resonance images of the human brain.Stat Methods Med Res. 2003 Oct;12(5):375-99. doi: 10.1191/0962280203sm339ra. Stat Methods Med Res. 2003. PMID: 14599002 Review.
-
Spatiotemporal wavelet analysis for functional MRI.Neuroimage. 2004 Oct;23(2):500-16. doi: 10.1016/j.neuroimage.2004.04.017. Neuroimage. 2004. PMID: 15488399
-
Real-time functional magnetic resonance imaging: methods and applications.Magn Reson Imaging. 2007 Jul;25(6):989-1003. doi: 10.1016/j.mri.2007.02.007. Epub 2007 Apr 23. Magn Reson Imaging. 2007. PMID: 17451904 Review.
Cited by
-
Spontaneous brain activity observed with functional magnetic resonance imaging as a potential biomarker in neuropsychiatric disorders.Cogn Neurodyn. 2010 Dec;4(4):275-94. doi: 10.1007/s11571-010-9126-9. Epub 2010 Aug 3. Cogn Neurodyn. 2010. PMID: 22132039 Free PMC article.
-
Brain dynamics and temporal trajectories during task and naturalistic processing.Neuroimage. 2019 Feb 1;186:410-423. doi: 10.1016/j.neuroimage.2018.11.016. Epub 2018 Nov 16. Neuroimage. 2019. PMID: 30453032 Free PMC article.
-
A wavelet-based statistical analysis of FMRI data: I. motivation and data distribution modeling.Neuroinformatics. 2005;3(4):319-42. doi: 10.1385/NI:3:4:319. Neuroinformatics. 2005. PMID: 16284415
-
The network architecture of value learning.Netw Neurosci. 2018 Jun 1;2(2):128-149. doi: 10.1162/netn_a_00021. eCollection 2018. Netw Neurosci. 2018. PMID: 30215030 Free PMC article.
-
An investigation of fMRI time series stationarity during motor sequence learning foot tapping tasks.J Neurosci Methods. 2014 Apr 30;227:75-82. doi: 10.1016/j.jneumeth.2014.02.003. Epub 2014 Feb 11. J Neurosci Methods. 2014. PMID: 24530436 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources