The cytoskeleton and epidermal morphogenesis in C. elegans
- PMID: 15501449
- DOI: 10.1016/j.yexcr.2004.08.017
The cytoskeleton and epidermal morphogenesis in C. elegans
Abstract
During Caenorhabditis elegans development, the process of epidermal elongation converts the bean-shaped embryo into the long thin shape of the larval worm. Epidermal elongation results from changes in the shape of epidermal cells, which in turn result from changes in the epidermal cytoskeleton, the extracellular matrix, and in cell-matrix adhesion junctions. Here, we review the roles of cytoskeletal filament systems in epidermal cell shape change during elongation. Genetic and cell biological analyses have established that all three major cytoskeletal filament systems (actin microfilaments, microtubules, and intermediate filaments (IFs)) play distinct and essential roles in epidermal cell shape change. Recent work has also highlighted the importance of communication between these systems for their integrated function in epidermal elongation. Epidermal cells undergo reciprocal interactions with underlying muscle cells, which regulate the position and function of IF-containing cell-matrix adhesion structures within the epidermis. Elongation thus exemplifies the reciprocal tissue interactions of organogenesis.
Similar articles
-
C. elegans ankyrin repeat protein VAB-19 is a component of epidermal attachment structures and is essential for epidermal morphogenesis.Development. 2003 Dec;130(23):5791-801. doi: 10.1242/dev.00791. Epub 2003 Oct 8. Development. 2003. PMID: 14534136
-
The conserved zinc finger protein VAB-23 is an essential regulator of epidermal morphogenesis in Caenorhabditis elegans.Dev Biol. 2009 Dec 1;336(1):84-93. doi: 10.1016/j.ydbio.2009.09.036. Epub 2009 Sep 30. Dev Biol. 2009. PMID: 19799893
-
The cell junction protein VAB-9 regulates adhesion and epidermal morphology in C. elegans.Nat Cell Biol. 2003 Jul;5(7):619-25. doi: 10.1038/ncb1002. Nat Cell Biol. 2003. PMID: 12819787
-
Getting into shape: epidermal morphogenesis in Caenorhabditis elegans embryos.Bioessays. 2001 Jan;23(1):12-23. doi: 10.1002/1521-1878(200101)23:1<12::AID-BIES1003>3.0.CO;2-R. Bioessays. 2001. PMID: 11135305 Review.
-
Intermediate filaments in Caenorhabditis elegans.Cell Motil Cytoskeleton. 2009 Oct;66(10):852-64. doi: 10.1002/cm.20372. Cell Motil Cytoskeleton. 2009. PMID: 19437512 Review.
Cited by
-
3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo.BMC Bioinformatics. 2019 Apr 8;20(1):176. doi: 10.1186/s12859-019-2720-x. BMC Bioinformatics. 2019. PMID: 30961566 Free PMC article.
-
Polarity and cell fate specification in the control of Caenorhabditis elegans gastrulation.Dev Dyn. 2009 Apr;238(4):789-96. doi: 10.1002/dvdy.21893. Dev Dyn. 2009. PMID: 19253398 Free PMC article. Review.
-
pix-1 controls early elongation in parallel with mel-11 and let-502 in Caenorhabditis elegans.PLoS One. 2014 Apr 14;9(4):e94684. doi: 10.1371/journal.pone.0094684. eCollection 2014. PLoS One. 2014. PMID: 24732978 Free PMC article.
-
Genetic Suppression of Basement Membrane Defects in Caenorhabditis elegans by Gain of Function in Extracellular Matrix and Cell-Matrix Attachment Genes.Genetics. 2018 Apr;208(4):1499-1512. doi: 10.1534/genetics.118.300731. Epub 2018 Feb 12. Genetics. 2018. PMID: 29440357 Free PMC article.
-
The NCLX-type Na+/Ca2+ Exchanger NCX-9 Is Required for Patterning of Neural Circuits in Caenorhabditis elegans.J Biol Chem. 2017 Mar 31;292(13):5364-5377. doi: 10.1074/jbc.M116.758953. Epub 2017 Feb 14. J Biol Chem. 2017. PMID: 28196860 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous