Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan 7;280(1):104-11.
doi: 10.1074/jbc.M411437200. Epub 2004 Oct 21.

Histone H2A and Spt10 cooperate to regulate induction and autoregulation of the CUP1 metallothionein

Affiliations
Free article

Histone H2A and Spt10 cooperate to regulate induction and autoregulation of the CUP1 metallothionein

Hui-Ching Kuo et al. J Biol Chem. .
Free article

Abstract

Copper is an essential cellular cofactor that becomes toxic at high levels. Copper homeostasis is tightly regulated by opposing mechanisms that control copper import, export, and copper binding capacity within the cell. High levels of copper induce the expression of metallothioneins, small sulfhydryl-rich proteins with high metal binding capabilities that serve as neutralizers of toxic levels of metals. In yeast, the CUP1 gene encodes a copper metallothionein that is strongly induced in response to metals and other stress and is subsequently rapidly down-regulated. Activation of CUP1 is mediated by the copper-responsive transcriptional activator AceI, and also requires the histone acetylase Spt10 for full induction. We have examined the role of histone H2A in the normal regulation of the CUP1 gene. We have shown that specific H2A mutations in combination with spt10 deletions result in aberrant regulation of CUP1 expression. Certain lysine mutations in H2A alleviate the transcriptional defect in spt10 Delta strains, though CUP1 activation is still delayed in these mutants; however, CUP1 shutdown is normal. In contrast, serine mutations in H2A prevent CUP1 shutdown when combined with spt10 deletions. In addition, swi/snf mutants exhibit both impaired CUP1 induction and failure to shut down CUP1 normally. Finally, different Spt10-dependent histone acetylation events correlate with induction and shutdown. Taken together, these data indicate that CUP1 transcriptional shutdown, like induction, is an active process controlled by the chromatin structure of the gene. These results provide new insights for the role of chromatin structure in metal homeostasis.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources