Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004;22(3-5):269-77.

Lesion-induced and training-induced brain reorganization

Affiliations
  • PMID: 15502271
Review

Lesion-induced and training-induced brain reorganization

J Liepert et al. Restor Neurol Neurosci. 2004.

Abstract

Introduction: A stroke may modulate motor cortex excitability. We examined if distinct ischemic brain lesions are associated with a specific pattern of excitability changes. We also investigated the effects of a rehabilitative therapy on motor excitability.

Methods: In stroke patients, the consequences of a) a lesion in the central somatosensory system, b) a cerebellar lesion and c) a two week period of Constraint-induced movement therapy (CIMT), on motor cortex excitability were studied. Transcranial magnetic stimulation techniques and functional magnetic resonance imaging (fMRI) were employed.

Results: Patients with a lesion in the primary somatosensory cortex or in the ventroposterolateral nucleus of the thalamus had a decreased intracortical inhibition on the affected side. Patients with lesions in the territory of the superior cerebellar artery had a loss of intracortical facilitation and an increase of intracortical inhibition. Patients with cortical lesions undergoing CIMT had a loss of intracortical inhibition prior to therapy. After CIMT, changes of ICI were stronger in the lesioned than in the non-lesioned hemisphere but could result either in an increase of ICI or a reduction of ICI. In three patients fMRI results showed that cortical activation was less post CIMT as compared to pre-treatment activation. In parallel, ICI was reduced after treatment.

Conclusions: Our results suggest that, physiologically, central somatosensory influence on the motor cortex is inhibitory. In contrast, the cerebellum normally exerts a facilitatory influence on the motor cortex. CIMT induces changes of intracortical excitability mainly in the affected hemisphere.

PubMed Disclaimer

Publication types

LinkOut - more resources