Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov 3;126(43):13954-61.
doi: 10.1021/ja047875o.

Mimicking protein-protein electron transfer: voltammetry of Pseudomonas aeruginosa azurin and the Thermus thermophilus Cu(A) domain at omega-derivatized self-assembled-monolayer gold electrodes

Affiliations

Mimicking protein-protein electron transfer: voltammetry of Pseudomonas aeruginosa azurin and the Thermus thermophilus Cu(A) domain at omega-derivatized self-assembled-monolayer gold electrodes

Kyoko Fujita et al. J Am Chem Soc. .

Abstract

Well-defined voltammetric responses of redox proteins with acidic-to-neutral pI values have been obtained on pure alkanethiol as well as on mixed self-assembled-monolayer (SAM) omega-derivatized alkanethiol/gold bead electrodes. Both azurin (P. aeruginosa) (pI = 5.6) and subunit II (Cu(A) domain) of ba(3)-type cytochrome c oxidase (T. thermophilus) (pI = 6.0) exhibit optimal voltammetric responses on 1:1 mixtures of [H(3)C(CH(2))(n)()SH + HO(CH(2))(n)()SH] SAMs. The electron transfer (ET) rate vs distance behavior of azurin and Cu(A) is independent of the omega-derivatized alkanethiol SAM headgroups. Strikingly, only wild-type azurin and mutants containing Trp48 give voltammetric responses: based on modeling, we suggest that electronic coupling with the SAM headgroup (H(3)C- and/or HO-) occurs at the Asn47 side chain carbonyl oxygen and that an Asn47-Cys112 hydrogen bond promotes intramolecular ET to the copper. Inspection of models also indicates that the Cu(A) domain of ba(3)-type cytochrome c oxidase is coupled to the SAM headgroup (H(3)C- and/or HO-) near the main chain carbonyl oxygen of Cys153 and that Phe88 (analogous to Trp143 in subunit II of cytochrome c oxidase from R. sphaeroides) is not involved in the dominant tunneling pathway. Our work suggests that hydrogen bonds from hydroxyl or other proton-donor groups to carbonyl oxygens potentially can facilitate intermolecular ET between physiological redox partners.

PubMed Disclaimer

Publication types

LinkOut - more resources