Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov;52(5):953-64.
doi: 10.1002/mrm.20281.

Parallel imaging performance as a function of field strength--an experimental investigation using electrodynamic scaling

Affiliations
Free article

Parallel imaging performance as a function of field strength--an experimental investigation using electrodynamic scaling

Florian Wiesinger et al. Magn Reson Med. 2004 Nov.
Free article

Abstract

In this work, the dependence of parallel MRI performance on main magnetic field strength is experimentally investigated. Using the general framework of electrodynamic scaling, the B0-dependent behavior of the relevant radiofrequency fields at a single physical field strength of 7 T is studied. In the chosen implementation this is accomplished by adjusting the permittivity and conductivity of a homogeneous spherical phantom. With different mixing ratios of decane, ethanol, purified water, N-methylformamide, and sodium chloride, field strengths in the range of 1.5 to 11.5 T are mimicked. Based on sensitivity maps of an eight-coil receiver array, the field-dependent performance of parallel imaging is assessed in terms of the geometry factor g, which reflects noise enhancement in parallel imaging reconstruction. At low field strengths the SNR penalty was nearly independent of B0 and favorably low for 1D reduction factors up to between 3 and 4. At higher field strengths the transition between favorable and prohibitive parallel imaging conditions was found to shift toward higher feasible reduction factors. These findings are in good agreement with previous theoretical predictions. From this agreement it is concluded that parallel MRI at high B0 benefits specifically from onsetting far-field behavior of the involved radiofrequency fields.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources