Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov;52(5):1190-9.
doi: 10.1002/mrm.20262.

Bandwidth-modulated adiabatic RF pulses for uniform selective saturation and inversion

Affiliations
Free article

Bandwidth-modulated adiabatic RF pulses for uniform selective saturation and inversion

Jan M Warnking et al. Magn Reson Med. 2004 Nov.
Free article

Abstract

Radiofrequency (RF) inversion and saturation pulses with extremely high spatial selectivity and uniform profiles are a requirement for numerous MR techniques, such as pulsed arterial spin labeling and outer volume suppression. Adiabatic pulses used for inversion of longitudinal magnetization are ubiquitous, but the superior selectivity of adiabatic full passages has not been widely exploited for saturation because a simple way of calibrating the amplitude of these subadiabatic pulses is lacking. An analytically derived calibration equation is presented, applicable to a large class of pulses including the hyperbolic secant (HS) pulse and allowing the determination of the precise amplitude required to achieve any effective flip angle. The properties of this calibration are examined, and a highly selective and homogeneous HS saturation pulse is demonstrated. Based on this calibration a new class of RF pulses is developed. These bandwidth-modulated adiabatic selective saturation and inversion (BASSI) RF pulses afford optimal amplitude modulation, achieving uniform profiles at any effective flip angle. BASSI pulses are compared to existing gradient modulated adiabatic pulses in simulations and phantom experiments and shown to be superior in terms of selectivity and homogeneity, while requiring less RF energy. An application of BASSI pulses to pulsed arterial spin labeling is shown.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources