Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec 1;13(23):3007-15.
doi: 10.1093/hmg/ddh324. Epub 2004 Oct 27.

Iron-sulfur protein maturation in human cells: evidence for a function of frataxin

Affiliations

Iron-sulfur protein maturation in human cells: evidence for a function of frataxin

Oliver Stehling et al. Hum Mol Genet. .

Abstract

The maturation of iron-sulfur (Fe/S) proteins in eukaryotes has been intensively studied in yeast. Hardly anything is known so far about the process in higher eukaryotes, even though the high conservation of the yeast maturation components in most Eukarya suggests similar mechanisms. Here, we developed a cell culture model in which the RNA interference (RNAi) technology was used to deplete a potential component of Fe/S protein maturation, frataxin, in human HeLa cells. This protein is lowered in humans with the neuromuscular disorder Friedreich's ataxia (FRDA). Upon frataxin depletion by RNAi, the enzyme activities of the mitochondrial Fe/S proteins, aconitase and succinate dehydrogenase, were decreased, while the activities of non-Fe/S proteins remained constant. Moreover, Fe/S cluster association with the cytosolic iron-regulatory protein 1 was diminished. In contrast, no alterations in cellular iron uptake, iron content and heme formation were found, and no mitochondrial iron deposits were observed upon frataxin depletion. Hence, iron accumulation in FRDA mitochondria appears to be a late consequence of frataxin deficiency. These results demonstrate (i) that frataxin is a component of the human Fe/S cluster assembly machinery and (ii) that it plays a role in the maturation of both mitochondrial and cytosolic Fe/S proteins.

PubMed Disclaimer

Publication types