Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep;45(9):1139-48.
doi: 10.1093/pcp/pch143.

Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development

Affiliations

Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development

Chi-Chou Chiu et al. Plant Cell Physiol. 2004 Sep.

Abstract

Unlike nitrate uptake of plant roots, less is known at the molecular level about how nitrate is distributed in various plant tissues. In the present study, characterization of the nitrate transporter, AtNRT1:4, revealed a special role of petiole in nitrate homeostasis. Electrophysiological studies using Xenopus oocytes showed that AtNRT1:4 was a low-affinity nitrate transporter. Whole-mount in situ hybridization and RT-PCR demonstrated that AtNRT1:4 was expressed in the leaf petiole. In the wild type, the leaf petiole had low nitrate reductase activity, but a high nitrate content, indicating that it is the storage site for nitrate, whereas, in the atnrt1:4 mutant, the petiole nitrate content was reduced to 50-64% of the wild-type level. Moreover, atnrt1:4 mutant leaves were wider than wild-type leaves. This study revealed a critical role of AtNRT1:4 in regulating leaf nitrate homeostasis, and the deficiency of AtNRT1:4 can alter leaf development.

PubMed Disclaimer

Publication types

MeSH terms