Efficient repair of O6-ethylguanine, but not O4-ethylthymine or O2-ethylthymine, is dependent upon O6-alkylguanine-DNA alkyltransferase and nucleotide excision repair activities in human cells
- PMID: 1551130
Efficient repair of O6-ethylguanine, but not O4-ethylthymine or O2-ethylthymine, is dependent upon O6-alkylguanine-DNA alkyltransferase and nucleotide excision repair activities in human cells
Abstract
The formation and persistence of O6-ethylguanine, O4-ethylthymine, and O2-ethylthymine were quantitated in the genomic DNA of human lymphoblasts exposed to 1.0 mM N-ethyl-N-nitrosourea using immunoslot-blot. The three cell lines used included one which lacks O6-alkylguanine-DNA alkyltransferase, one deficient in nucleotide excision repair, and a third which is competent in both of these repair pathways. The activity of O6-alkylguanine-DNA alkyltransferase was further modulated with O6-benzylguanine, a specific inhibitor of this protein. Repair of the O-ethylated thymines was slow and not related to either DNA repair phenotype. O6-Ethylguanine was repaired with a half-life of about 8 h in cells which expressed both O6-alkylguanine-DNA alkyltransferase and nucleotide excision repair functions. Cells expressing O6-alkylguanine-DNA alkyltransferase activity but lacking nucleotide excision repair showed only slow repair of O6-ethylguanine (half-life of O6-ethylguanine, 43 h), while cells lacking the alkyltransferase showed little or no repair of O6-ethylguanine regardless of nucleotide excision repair activity (half-lives of O6-ethylguanine, 53 to greater than 100 h). We conclude that O6-alkylguanine-DNA alkyltransferase and nucleotide excision repair cooperate in the repair of O6-ethylguanine in human cells.
Comment in
-
Re: S. M. Bronstein et al. Efficient repair of O6-ethylguanine, but not O4-ethylthymine or O2-ethylthymine, is dependent upon O6-alkylguanine-DNA alkyltransferase and nucleotide excision repair activities in human cells. Cancer Res., 52: 2008-2011, 1992.Cancer Res. 1992 Dec 15;52(24):6983-5. Cancer Res. 1992. PMID: 1458492 No abstract available.
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Research Materials