Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jun;7(2):91-6.
doi: 10.1080/10253890410001677240.

The activity of the hypothalamo-neurohypophysial system in response to acute stressor exposure: neuroendocrine and electrophysiological observations

Affiliations
Free article
Review

The activity of the hypothalamo-neurohypophysial system in response to acute stressor exposure: neuroendocrine and electrophysiological observations

Mario Engelmann et al. Stress. 2004 Jun.
Free article

Abstract

The present mini review focuses on stress-induced alterations of the electrical and secretory activity of vasopressin (AVP) and oxytocin (OXT) neurones originating within the supraoptic nucleus (SON) and constituting the hypothalamo-neurohypophysial system (HNS) in the male rat. Previously, it was thought that SON neurones are predominantly activated by osmotic and reproductive stimuli. However, recent findings also suggest a selective activation of AVP and/or OXT neurones in response to specific stressors. Inhibitory amino acids seem to participate at the level of the SON in the control of HNS activity during stress. Taurine, probably of glial origin, selectively inhibits the secretory activity of AVP neurones. In contrast, GABA, probably of neuronal origin, interferes with the release of OXT both from axon terminals into blood and from somata/dendrites into the extracellular fluid of the SON. Depending upon whether a defined stressor triggers taurine and/or GABA release within the SON the secretion of AVP and/or OXT from HNS neurones will be inhibited. These observations shed new light on the neurone-neurone and glial-neurone interactions that ensure an appropriate neuroendocrine stress response.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources