Contamination is a frequent confounding factor in toxicology studies with anthraquinone and related compounds
- PMID: 15513832
- DOI: 10.1080/10915810490517072
Contamination is a frequent confounding factor in toxicology studies with anthraquinone and related compounds
Abstract
Anthraquinone (AQ) (9,10-anthracenedione) is an important compound in commerce. Many structurally related AQ derivatives are medicinal natural plant products. Examples include 1-hydroxyanthraquinone (1-OH-AQ) and 2-hydroxyanthraquinone (2-OH-AQ), which are also metabolites of AQ. Some commercial AQ is produced by the oxidation of anthracene (AQ-OX). In the recent past, the anthracene used was distilled from coal tar and different lots of derived AQ often contained polycyclic aromatic hydrocarbon contaminants, particularly 9-nitroanthracene (9-NA). Many toxicology studies on AQ used contaminated anthracene-derived AQ-OX, including a National Toxicology Program (NTP) 2-year cancer bioassay that reported a weak to modest increase in tumors in the kidney and bladder of male and female F344/N rats and in the livers of male and female B6C3F1 mice. The AQ-OX used in that bioassay was mutagenic and contained 9-NA and other contaminants. In contrast, purified AQ is not genotoxic. The purpose of this paper is to provide additional information to help iterpret the NTP cancer bioassay. This paper describes a quantitative analytical study of the NTP anthracene-derived AQ-OX test material, and presents the results of mutagenicity studies with the 1-OH-AQ and 2-OH-AQ metabolites and the primary contaminant 9-NA. Purified 1-OH-AQ and 2-OH-AQ exhibited only weak mutagenic activity in selected strains of tester bacteria and required S9. Literature reports of potent mutagenic activity for 1-OH-AQ and 2-OH-AQ in bacteria minus S9 are, once again, very likely the result of the presence of contaminants in the test samples. Weak activity and limited production of the 1-OH-AQ and 2-OH-AQ metabolites are possible reasons that AQ fails to exhibit activity in numerous genotoxicity assays. 9-NA was mutagenic in tester strains TA98 and TA100 minus S9. This pattern of activity is consistent with that seen with the contaminated AQ-OX used in the NTP bioassay. Analysis of all the mutagenicity and analytical data, however, indicates that the mutagenic contamination in the NTP bioassay probably resides with compounds in addition to 9-NA. 9-NA exhibited potent mutagenic activity in the L5178Y mammalian cell mutagenicity assay in the presence of S9. The positive response was primarily associated with an increase in small colony mutants suggesting a predominance of a clastogenic mechanism. Quantitative mutagenicity and carcinogenicity potency estimates indicate that it is plausible that the contaminants alone in the NTP AQ-OX bioassay could have been responsible for all of the observed carcinogenic activity. Although AQ-OX is no longer commercially used in the United States, many of the reported genotoxicity and carcinogenicity results in the literature for AQ and AQ derivative compounds must be viewed with caution.
Similar articles
-
The preparation of anthraquinone used in the National Toxicology Program cancer bioassay was contaminated with the mutagen 9-nitroanthracene.Mutagenesis. 2001 Mar;16(2):169-77. doi: 10.1093/mutage/16.2.169. Mutagenesis. 2001. PMID: 11230561
-
NTP Technical Report on the comparative toxicity studies of allyl acetate (CAS No. 591-87-7), allyl alcohol (CAS No. 107-18-6) and acrolein (CAS No. 107-02-8) administered by gavage to F344/N rats and B6C3F1 mice.Toxic Rep Ser. 2006 Jul;(48):1-73, A1-H10. Toxic Rep Ser. 2006. PMID: 17160105
-
Anthracene-9,10-diones as potential anticancer agents: bacterial mutation studies of amido-substituted derivatives reveal an unexpected lack of mutagenicity.J Med Chem. 1998 Sep 10;41(19):3748-52. doi: 10.1021/jm980167r. J Med Chem. 1998. PMID: 9733500
-
Final report on the safety assessment of capsicum annuum extract, capsicum annuum fruit extract, capsicum annuum resin, capsicum annuum fruit powder, capsicum frutescens fruit, capsicum frutescens fruit extract, capsicum frutescens resin, and capsaicin.Int J Toxicol. 2007;26 Suppl 1:3-106. doi: 10.1080/10915810601163939. Int J Toxicol. 2007. PMID: 17365137 Review.
-
A compilation of two decades of mutagenicity test results with the Ames Salmonella typhimurium and L5178Y mouse lymphoma cell mutation assays.Chem Res Toxicol. 2006 May;19(5):627-44. doi: 10.1021/tx0503552. Chem Res Toxicol. 2006. PMID: 16696565 Review.
Cited by
-
Anthraquinone as emerging contaminant: technological, toxicological, regulatory and analytical aspects.Toxicol Res. 2023 Sep 4;40(1):11-21. doi: 10.1007/s43188-023-00202-3. eCollection 2024 Jan. Toxicol Res. 2023. PMID: 38223676 Free PMC article. Review.
-
Crude extracts of Sesamum Indicum roots used as anthraquinone source effect on pulping with sodium hydroxide of Sudanese bagasse.BMC Res Notes. 2019 Jan 15;12(1):26. doi: 10.1186/s13104-019-4075-9. BMC Res Notes. 2019. PMID: 30646950 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous