Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr;288(4):G654-63.
doi: 10.1152/ajpgi.00386.2004. Epub 2004 Oct 28.

Heat-stable enterotoxin of Escherichia coli stimulates a non-CFTR-mediated duodenal bicarbonate secretory pathway

Affiliations
Free article

Heat-stable enterotoxin of Escherichia coli stimulates a non-CFTR-mediated duodenal bicarbonate secretory pathway

Zachary M Sellers et al. Am J Physiol Gastrointest Liver Physiol. 2005 Apr.
Free article

Abstract

The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) is an important pathway for duodenal mucosal bicarbonate secretion. Duodenal biopsies from CF patients secrete bicarbonate in response to heat-stable enterotoxin from Escherichia coli (STa) but not cAMP. To explore the mechanism of STa-induced bicarbonate secretion in CF more fully, we examined the role of CFTR in STa-stimulated duodenal bicarbonate secretion in mice. In vivo, the duodenum of CFTR (-/-) or control mice was perfused with forskolin (10(-4) M), STa (10(-7) M), uroguanylin (10(-7) M), 8-bromoguanosine 3',5'-cGMP (8-Br-cGMP) (10(-3) M), genistein (10(-6) M) plus STa, or herbimycin A (10(-6) M) plus STa. In vitro, duodenal mucosae were voltage-clamped in Ussing chambers, and bicarbonate secretion was measured by pH-stat. The effect of genistein, DIDS (10(-4) M), and chloride removal was also studied in vitro. Control, but not CF, mice produced a significant increase in duodenal bicarbonate secretion after perfusion with forskolin, uroguanylin, or 8-Br-cGMP. However, both control and CF animals responded to STa with significant increases in bicarbonate output. Genistein and herbimycin A abolished this response in CF mice but not in controls. In vitro, STa-stimulated bicarbonate secretion in CF tissues was inhibited by genistein, DIDS, and chloride-free conditions, whereas bicarbonate secretion persisted in control mice. In the CF duodenum, STa can stimulate bicarbonate secretion via tyrosine kinase activity resulting in apical Cl(-)/HCO(3)(-) exchange. Further studies elucidating the intracellular mechanisms responsible for such non-CFTR mediated bicarbonate secretion may lead to important therapies for CF.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources