Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar;288(3):R600-6.
doi: 10.1152/ajpregu.00182.2004. Epub 2004 Oct 28.

Signaling for myocardial depression in hemorrhagic shock: roles of Toll-like receptor 4 and p55 TNF-alpha receptor

Affiliations
Free article

Signaling for myocardial depression in hemorrhagic shock: roles of Toll-like receptor 4 and p55 TNF-alpha receptor

Xianzhong Meng et al. Am J Physiol Regul Integr Comp Physiol. 2005 Mar.
Free article

Abstract

Hemorrhagic shock causes myocardial contractile depression. Although this myocardial disorder is associated with increased expression of tumor necrosis factor-alpha (TNF-alpha), the role of TNF-alpha as a myocardial depressant factor in hemorrhagic shock remains to be determined. Moreover, it is unclear which TNF-alpha receptor mediates the myocardial depressive effects of TNF-alpha. Toll-like receptor 4 (TLR4) regulates cellular expression of proinflammatory mediators following lipopolysaccharide stimulation and may be involved in the tissue inflammatory response to injury. The contribution of TLR4 signaling to tissue TNF-alpha response to hemorrhagic shock and TLR4's role in myocardial depression during hemorrhagic shock are presently unknown. We examined the relationship of TNF-alpha production to myocardial depression in a mouse model of nonresuscitated hemorrhagic shock, assessed the influence of TLR4 mutation, resulting in defective signaling, on TNF-alpha production and myocardial depression, and determined the roles of TNF-alpha and TNF-alpha receptors in myocardial depression using a gene knockout (KO) approach. Hemorrhagic shock resulted in increased plasma and myocardial TNF-alpha (4.9- and 4.5-fold, respectively) at 30 min and induced myocardial contractile depression at 4 h. TLR4 mutation abolished the TNF-alpha response and attenuated myocardial depression (left ventricular developed pressure of 43.0 +/- 6.2 mmHg in TLR4 mutant vs. 30.0 +/- 3.6 mmHg in wild type, P < 0.05). TNF-alpha KO also attenuated myocardial depression in hemorrhagic shock, and the p55 receptor KO, but not the p75 receptor KO, mimicked the effect of TNF-alpha KO. The results suggest that TLR4 plays a novel role in signaling to the TNF-alpha response during hemorrhagic shock and that TNF-alpha through the p55 receptor activates a pathway leading to myocardial depression. Thus TLR4 and the p55 TNF-alpha receptor represent therapeutic targets for preservation of cardiac mechanical function during hemorrhagic shock.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources