Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov 26;95(11):1091-9.
doi: 10.1161/01.RES.0000149299.34793.3c. Epub 2004 Oct 28.

Protein kinase D is a novel mediator of cardiac troponin I phosphorylation and regulates myofilament function

Affiliations
Free article

Protein kinase D is a novel mediator of cardiac troponin I phosphorylation and regulates myofilament function

Robert S Haworth et al. Circ Res. .
Free article

Abstract

Protein kinase D (PKD) is a serine kinase whose myocardial substrates are unknown. Yeast 2-hybrid screening of a human cardiac library, using the PKD catalytic domain as bait, identified cardiac troponin I (cTnI), myosin-binding protein C (cMyBP-C), and telethonin as PKD-interacting proteins. In vitro phosphorylation assays revealed PKD-mediated phosphorylation of cTnI, cMyBP-C, and telethonin, as well as myomesin. Peptide mass fingerprint analysis of cTnI by liquid chromatography-coupled mass spectrometry indicated PKD-mediated phosphorylation of a peptide containing Ser22 and Ser23, the protein kinase A (PKA) targets. Ser22 and Ser23 were replaced by Ala, either singly (Ser22Ala or Ser23Ala) or jointly (Ser22/23Ala), and the troponin complex reconstituted in vitro, using wild-type or mutated cTnI together with wild-type cardiac troponin C and troponin T. PKD-mediated cTnI phosphorylation was reduced in complexes containing Ser22Ala or Ser23Ala cTnI and completely abolished in the complex containing Ser22/23Ala cTnI, indicating that Ser22 and Ser23 are both targeted by PKD. Furthermore, troponin complex containing wild-type cTnI was phosphorylated with similar kinetics and stoichiometry (approximately 2 mol phosphate/mol cTnI) by both PKD and PKA. To determine the functional impact of PKD-mediated phosphorylation, Ca2+ sensitivity of tension development was studied in a rat skinned ventricular myocyte preparation. PKD-mediated phosphorylation did not affect maximal tension but produced a significant rightward shift of the tension-pCa relationship, indicating reduced myofilament Ca2+ sensitivity. At submaximal Ca2+ activation, PKD-mediated phosphorylation also accelerated isometric crossbridge cycling kinetics. Our data suggest that PKD is a novel mediator of cTnI phosphorylation at the PKA sites and may contribute to the regulation of myofilament function.

PubMed Disclaimer

Comment in

Publication types

MeSH terms