Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May;203(2):387-97.
doi: 10.1002/jcp.20235.

Involvement of the tumor necrosis factor (TNF)/TNF receptor system in leukemic cell apoptosis induced by histone deacetylase inhibitor depsipeptide (FK228)

Affiliations

Involvement of the tumor necrosis factor (TNF)/TNF receptor system in leukemic cell apoptosis induced by histone deacetylase inhibitor depsipeptide (FK228)

Krittaya Sutheesophon et al. J Cell Physiol. 2005 May.

Abstract

Inhibition of histone deacetylase (HDAC) is a novel strategy for the treatment of leukemias via restoration of aberrantly silenced genes. In this study, we conducted a detailed analysis of anti-leukemic effects of an HDAC inhibitor (HDI), depsipeptide (FK228), using myeloid leukemia cell lines HL-60 and K562. DNA chip analysis revealed upregulation of TNF-alpha mRNA and a number of molecules involved in TNF-signaling such as TRAF-6, caspases-10, and -7 in depsipeptide-treated HL-60 cells, which prompted us to examine the involvement of the TNF/TNF receptor system in the anti-leukemic effects of the drug. Upregulation of TNF-alpha was induced by depsipeptide in HL-60 and K562 cells, which expressed type I TNF receptors (TNF-RI). Depsipeptide activated caspases-8 and -10, which in turn cleave caspases-3 and -7, leading to apoptotic cell death in both cell lines. Anti-TNF-alpha neutralizing antibody and short interfering RNA (siRNA) against TNF-RI alleviated the activation of the caspase cascade and the induction of apoptosis, indicating the presence of an autocrine loop. Finally, we demonstrated that the enhanced production of TNF-alpha by depsipeptide was due to transcriptional activation of the TNF-alpha gene through hyperacetylation of histones H3 and H4 in its promoter region (-208 to +35). These results suggest that autocrine production of TNF-alpha plays a role in the cytotoxicity of depsipeptide against a subset of leukemias.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources