Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan;38(1):159-67.
doi: 10.1016/j.jbiomech.2004.03.020.

Dynamic shear stress in parallel-plate flow chambers

Affiliations

Dynamic shear stress in parallel-plate flow chambers

Rommel G Bacabac et al. J Biomech. 2005 Jan.

Abstract

An in vitro model using a parallel-plate fluid flow chamber is supposed to simulate in vivo fluid shear stresses on various cell types exposed to dynamic fluid flow in their physiological environment. The metabolic response of cells in vitro is associated with the wall shear stress. However, parallel-plate flow chambers have not been characterized for dynamic fluid flow experiments. We use a dimensionless ratio h / lambda(v), in determining the exact magnitude of the dynamic wall shear stress, with its oscillating components scaled by a shear factor T. It is shown that, in order to expose cells to predictable levels of dynamic fluid shear stress, two conditions have to be met: (1) h / lambda(v) < 2, where h is the distance between the plates and lambda(v) is the viscous penetration depth; and (2) f(0) < f(c) / m, where the critical frequency f(c) is the upper threshold for this flow regime, m is the highest harmonic mode of the flow, and f(0) is the fundamental frequency of fluid flow.

PubMed Disclaimer

LinkOut - more resources