Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004;33(8):1001-19.
doi: 10.1068/p5025.

Haptic perception of virtual surfaces: scaling subjective qualities and interstimulus differences

Affiliations

Haptic perception of virtual surfaces: scaling subjective qualities and interstimulus differences

Mark Hollins et al. Perception. 2004.

Abstract

We examined, in two experiments, the perceptual scaling of the properties of haptically examined virtual surfaces, and the way in which these properties subjectively combine. Participants used a consistent movement pattern to explore, with a stylus, virtual surfaces generated by a force-feedback device. In experiment 1, four surface properties (bump size, friction, resistance to normal force, and vibration amplitude) were varied individually, in separate blocks of trials. Free magnitude estimates of the subjective dimensions corresponding to these properties showed that all four dimensions conformed closely to the power law, except at very low stimulus values. Exponents for bump size (0.80) and stiffness (1.01) were consistent with values established in earlier work with direct touch of real surfaces. Surprisingly, the exponent for stickiness, not previously measured, was much higher than those for other dimensions (1.49). In experiment 2, dimensional combinations were analyzed by asking subjects to give magnitude estimates of the subjective difference between pairs of surfaces differing in one or two properties. Magnitude estimates of a given one-dimensional difference were generally larger when the subject was pressing down firmly on the surfaces, than when only gentle downward pressure was required; this result suggests that forces generated when a surface is haptically examined are interpreted as invariant indicators of the magnitudes of the surface properties themselves. Estimates of one-dimensional differences were also used to make predictions of two-dimensional differences, under assumptions of dimensional integrality and separability. The results fell between these two sets of predictions, indicating only modest integration of surface properties examined with indirect touch.

PubMed Disclaimer

Publication types

LinkOut - more resources