Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov 10;126(44):14548-56.
doi: 10.1021/ja040107c.

Envisaging the physicochemical processes during the preparation of supported catalysts: Raman microscopy on the impregnation of Mo onto Al2O3 extrudates

Affiliations

Envisaging the physicochemical processes during the preparation of supported catalysts: Raman microscopy on the impregnation of Mo onto Al2O3 extrudates

Jaap A Bergwerff et al. J Am Chem Soc. .

Abstract

Raman microscopy has been applied to study the preparation of shaped Mo/Al(2)O(3) catalysts. The speciation of different Mo complexes over gamma-Al(2)O(3) support bodies was followed in time after pore volume impregnation with aqueous solutions containing different Mo complexes. The addition of NO(3-) to the impregnation solutions allows for a quantitative Raman analysis of the distribution of different complexes over the catalyst bodies as this ion can be used as an internal standard. After impregnation with an acidic ammonium heptamolybdate (AHM) solution, the strong interaction between Mo(7)O(24)(6-) and Al(2)O(3) results in slow transport of this complex through the support and extensive formation of Al(OH)(6)Mo(6)O(18)(3-) near the outer surface of the support bodies. This may be prevented by decreasing the interaction between Mo and Al(2)O(3). In this way, transport is facilitated and a homogeneous distribution of Mo is obtained on a reasonable time scale. A decrease in interaction between Mo and Al(2)O(3) can be achieved by using alkaline impregnation solutions or by the addition of complexing agents, such as citrate and phosphate, to the impregnation solution. In general, time-resolved in situ Raman microscopy can be a valuable tool to study the physicochemical processes during the preparation of supported catalysts.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources