Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov;54(4):863-75.
doi: 10.1111/j.1365-2958.2004.04328.x.

Genetic screening of Hrp type III-related pathogenicity genes controlled by the HrpB transcriptional activator in Ralstonia solanacearum

Affiliations
Free article

Genetic screening of Hrp type III-related pathogenicity genes controlled by the HrpB transcriptional activator in Ralstonia solanacearum

Takafumi Mukaihara et al. Mol Microbiol. 2004 Nov.
Free article

Abstract

As in many other Gram-negative phytopathogenic bacteria, the Hrp type III secretion system is essential for the pathogenicity of Ralstonia solanacearum on host plants. The expression of most of the type III effector genes previously isolated from R. solanacearum is co-regulated with those of hrp genes by an AraC-type transcriptional activator, HrpB. In order to isolate type III-related pathogenicity genes, we screened hrpB-regulated genes in R. solanacearum. Using a transposon-based system, we isolated 30 novel hpx (hrpB-dependent expression) genes outside the hrp gene cluster. Most of the hpx genes contain a PIP (plant-inducible promoter) box-like motif in their putative promoter regions. Seven hpx genes encoded homologues of known type III effectors and type III-related proteins found in other animal and plant pathogens. Four encoded known enzymes, namely, glyoxalase I, Nudix hydrolase, spermidine synthase and transposase. Interestingly, six hpx genes encoded two types of leucine-rich repeat (LRR) protein. Products of the remaining genes did not show any significant homology to known proteins. We also identified two novel hrpB-regulated genes, hpaZ and hpaB, downstream of hrpY in the hrp cluster. The hpaB gene of R. solanacearum, but not hpaZ, was required for both the pathogenicity and ability to induce hypersensitive reaction on plants. We show that a hpaB null mutant still produces Hrp pili on the cell surface although it shows a typical Hrp-defective phenotype on plants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms