Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Nov 19;344(2):335-49.
doi: 10.1016/j.jmb.2004.08.107.

Sequence-dependent kinetic model for transcription elongation by RNA polymerase

Affiliations
Comparative Study

Sequence-dependent kinetic model for transcription elongation by RNA polymerase

Lu Bai et al. J Mol Biol. .

Erratum in

  • J Mol Biol. 2008 Sep 12;381(4):1088

Abstract

We present a kinetic model for the sequence-dependent motion of RNA polymerase (RNAP) during transcription elongation. For each NTP incorporation, RNAP has a net forward translocation of one base-pair along the DNA template. However, this process may involve the exploration of back-tracked and forward-tracked translocation modes. In our model, the kinetic rates for the reaction pathway, calculated based on the stabilities of the transcription elongation complex (TEC), necessarily lead to sequence-dependent NTP incorporation rates. Simulated RNAP elongation kinetics is in good agreement with data from transcription gels and single-molecule studies. The model provides a kinetic explanation for well-known back-tracked pauses at transcript positions with unstable TECs. It also predicts a new type of pause caused by an energetically unfavorable transition from pre to post-translocation modes.

PubMed Disclaimer

Publication types

LinkOut - more resources