Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004:62:127-52.
doi: 10.1016/S0070-2153(04)62005-9.

Vascular endothelial growth factor and its receptors in embryonic zebrafish blood vessel development

Affiliations
Review

Vascular endothelial growth factor and its receptors in embryonic zebrafish blood vessel development

Katsutoshi Goishi et al. Curr Top Dev Biol. 2004.

Abstract

There is intense interest in how blood vessel development is regulated. A number of vascular growth factors and their receptors have been described. The vascular endothelial growth factor (VEGF) and its receptors are major contributors to normal mammalian vascular development. These receptors include VEGFR-1, VEGFR-2, VEGFR-3, neuropilin-1 (NRP1), and NRP2. The function of these genes have been determined to some degree in mouse gene targeting studies. These knockouts are embryonically lethal, and early death can be attributed in part to lack of normal blood and lymphatic vessel development. More recently, it has been demonstrated that zebrafish are an excellent model for studying the genes and proteins that regulate embryonic vascular development. Zebrafish have a number of advantages compared to mice, including rapid embryonic development and the ability to examine and manipulate embryos outside of the animal. In this review, we describe some of the earlier mouse VEGF/receptor functional studies and emphasize the development of the zebrafish vasculature. We describe the zebrafish vasculature, zebrafish VEGF and VEGF receptors, advantages of the zebrafish model, resources, and methods of determining growth factor and receptor function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources