Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov;91(4):911-9.
doi: 10.1111/j.1471-4159.2004.02776.x.

Characterization of subpopulations of neurons producing melanin-concentrating hormone in the rat ventral diencephalon

Affiliations

Characterization of subpopulations of neurons producing melanin-concentrating hormone in the rat ventral diencephalon

Vesna Cvetkovic et al. J Neurochem. 2004 Nov.

Abstract

Neurons producing melanin-concentrating hormone (MCH) are involved in a large array of functions. Some of these functions may be mediated by specific subpopulations. One such subpopulation was characterized by the expression of the neurokinin 3 receptor and the 'cocaine- and amphetamine-regulated transcript' (CART) peptide, while another expresses neither one of these two molecules. MCH+/CART+ axons were traced throughout the brain and showed a strikingly different pattern of distribution than that of MCH+/CART- axons. Particularly, many MCH+/CART+ axons are observed in the telencephalon, while MCH+/CART- projections are mostly directed toward the brainstem. Calbindin, a protein involved in calcium homeostasis, has been largely used in many structures of the brain for the identification of neuronal phenotypes. However, few MCH neurons were labeled for this protein. On the other hand, neurons producing the peptides hypocretins (Hcrt), and codistributed with the MCH neurons, were all labeled for calbindin. Thus, at least two subpopulations of MCH neurons can be distinguished on the basis of neuronal phenotypes and connections. These neurons may be involved in distinct circuitry and in distinct functions.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources