Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan 14;280(2):1490-8.
doi: 10.1074/jbc.M407783200. Epub 2004 Nov 4.

Direct voltage control of signaling via P2Y1 and other Galphaq-coupled receptors

Affiliations
Free article

Direct voltage control of signaling via P2Y1 and other Galphaq-coupled receptors

Juan Martinez-Pinna et al. J Biol Chem. .
Free article

Abstract

Emerging evidence suggests that Ca2+ release evoked by certain G-protein-coupled receptors can be voltage-dependent; however, the relative contribution of different components of the signaling cascade to this response remains unclear. Using the electrically inexcitable megakaryocyte as a model system, we demonstrate that inositol 1,4,5-trisphosphate-dependent Ca2+ mobilization stimulated by several agonists acting via Galphaq-coupled receptors is potentiated by depolarization and that this effect is most pronounced for ADP. Voltage-dependent Ca2+ release was not induced by direct elevation of inositol 1,4,5-trisphosphate, by agents mimicking diacylglycerol actions, or by activation of phospholipase Cgamma-coupled receptors. The response to voltage did not require voltage-gated Ca2+ channels as it persisted in the presence of nifedipine and was only weakly affected by the holding potential. Strong predepolarizations failed to affect the voltage-dependent Ca2+ increase; thus, an alteration of G-protein betagamma subunit binding is also not involved. Megakaryocytes from P2Y1(-/-) mice lacked voltage-dependent Ca2+ release during the application of ADP but retained this response after stimulation of other Galphaq-coupled receptors. Although depolarization enhanced Ca2+ mobilization resulting from GTPgammaS dialysis and to a lesser extent during AlF4- or thimerosal, these effects all required the presence of P2Y1 receptors. Taken together, the voltage dependence to Ca2+ release via Galphaq-coupled receptors is not due to control of G-proteins or down-stream signals but, rather, can be explained by a voltage sensitivity at the level of the receptor itself. This effect, which is particularly robust for P2Y1 receptors, has wide-spread implications for cell signaling.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources