Protein-specific features of the general secretion pathway in yeast: the secretion of acid phosphatase
- PMID: 1552857
- DOI: 10.1111/j.1365-2958.1992.tb01503.x
Protein-specific features of the general secretion pathway in yeast: the secretion of acid phosphatase
Abstract
The major phosphate-repressible acid phosphatase (APase) of Saccharomyces cerevisiae, a cell wall glycoprotein, has been extensively used as a reporter protein to analyse successive steps in the yeast secretory pathway. In contrast to other yeast secretory proteins, APase can still be translocated into the endoplasmic reticulum (ER) even when it is made without its signal peptide. This property illustrates the permissiveness of targeting to the ER in yeast. Studies on APase-containing hybrid proteins have provided some of the evidence that specific soluble factors must interact with secretory proteins prior to their translocation across the ER membrane. A systematic analysis of mutations affecting the sequence of the APase signal peptide cleavage site demonstrated that cleavage occurs only when the last amino acid of the signal sequence is small and neutral. This was one of the first studies to verify the requirements for signal peptidase cleavage that had previously only been predicted from statistical analysis. Studies performed either with inhibitors of glycosylation or with mutant APases demonstrated the critical role of core glycosylation for APase folding, which is essential for efficient transport beyond the ER. Following the fate of particular modified APases along the secretory pathway provided insights into some general properties of the secretory apparatus and illustrated the specific requirements for a given protein during its intracellular traffic.
Similar articles
-
In vivo translocation of the cell wall acid phosphatase across the yeast endoplasmic reticulum membrane: are there multiple signals for the targeting process?Biochimie. 1990 Feb-Mar;72(2-3):103-14. doi: 10.1016/0300-9084(90)90135-4. Biochimie. 1990. PMID: 2116180
-
The yeast acid phosphatase can enter the secretory pathway without its N-terminal signal sequence.Mol Cell Biol. 1987 Sep;7(9):3306-14. doi: 10.1128/mcb.7.9.3306-3314.1987. Mol Cell Biol. 1987. PMID: 3313013 Free PMC article.
-
Role of glycosylation in secretion of yeast acid phosphatase.FEBS Lett. 1987 Jun 15;217(2):174-9. doi: 10.1016/0014-5793(87)80658-0. FEBS Lett. 1987. PMID: 3297779
-
Genetic dissection of the early stages of protein secretion in yeast.Trends Genet. 1989 Mar;5(3):87-93. doi: 10.1016/0168-9525(89)90032-2. Trends Genet. 1989. PMID: 2660366 Review.
-
[Biosynthesis, processing, and lysosome targeting of acid phosphatase].Nihon Rinsho. 1995 Dec;53(12):2898-903. Nihon Rinsho. 1995. PMID: 8577032 Review. Japanese.
Cited by
-
Protein overexport in a Saccharomyces cerevisiae mutant is not due to facilitated release of cell-surface proteins.Folia Microbiol (Praha). 2000;45(3):251-4. doi: 10.1007/BF02908954. Folia Microbiol (Praha). 2000. PMID: 11271810
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources