Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase
- PMID: 15530400
- DOI: 10.1016/j.cub.2004.09.086
Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase
Abstract
With a single microtubule attachment, budding-yeast kinetochores provide an excellent system for understanding the coordinated linkage to dynamic microtubule plus ends for chromosome oscillation and positioning. Fluorescent tagging of kinetochore proteins indicates that, on average, all centromeres are clustered, distinctly separated from their sisters, and positioned equidistant from their respective spindle poles during metaphase. However, individual fluorescent chromosome markers near the centromere transiently reassociate with their sisters and oscillate from one spindle half to the other. To reconcile the apparent disparity between the average centromere position and individual centromere proximal markers, we utilized fluorescence recovery after photobleaching to measure stability of the histone-H3 variant Cse4p/CENP-A. Newly synthesized Cse4p replaces old protein during DNA replication. Once assembled, Cse4-GFP is a physically stable component of centromeres during mitosis. This allowed us to follow centromere dynamics within each spindle half. Kinetochores remain stably attached to dynamic microtubules and exhibit a low incidence of switching orientation or position between the spindle halves. Switching of sister chromatid attachment may be contemporaneous with Cse4p exchange and early kinetochore assembly during S phase; this would promote mixing of chromosome attachment to each spindle pole. Once biorientation is attained, centromeres rarely make excursions beyond their proximal half spindle.
Similar articles
-
Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast.Mol Biol Cell. 2005 Aug;16(8):3764-75. doi: 10.1091/mbc.e05-04-0275. Epub 2005 Jun 1. Mol Biol Cell. 2005. PMID: 15930123 Free PMC article.
-
Function and assembly of DNA looping, clustering, and microtubule attachment complexes within a eukaryotic kinetochore.Mol Biol Cell. 2009 Oct;20(19):4131-9. doi: 10.1091/mbc.e09-05-0359. Epub 2009 Aug 5. Mol Biol Cell. 2009. PMID: 19656849 Free PMC article.
-
A 3D map of the yeast kinetochore reveals the presence of core and accessory centromere-specific histone.Curr Biol. 2013 Oct 7;23(19):1939-44. doi: 10.1016/j.cub.2013.07.083. Epub 2013 Sep 26. Curr Biol. 2013. PMID: 24076245 Free PMC article.
-
Kinetochore composition and its function: lessons from yeasts.FEMS Microbiol Rev. 2014 Mar;38(2):185-200. doi: 10.1111/1574-6976.12049. FEMS Microbiol Rev. 2014. PMID: 24666101 Review.
-
The CCAN complex: linking centromere specification to control of kinetochore-microtubule dynamics.Semin Cell Dev Biol. 2011 Dec;22(9):946-52. doi: 10.1016/j.semcdb.2011.09.016. Epub 2011 Oct 19. Semin Cell Dev Biol. 2011. PMID: 22027615 Review.
Cited by
-
Kinetochore microtubule interaction during S phase in Saccharomyces cerevisiae.Genes Dev. 2007 Dec 15;21(24):3319-30. doi: 10.1101/gad.449407. Genes Dev. 2007. PMID: 18079178 Free PMC article.
-
The ABCs of CENPs.Chromosoma. 2011 Oct;120(5):425-46. doi: 10.1007/s00412-011-0330-0. Epub 2011 Jul 13. Chromosoma. 2011. PMID: 21751032 Review.
-
Epigenetic regulation of centromere function.Cell Mol Life Sci. 2020 Aug;77(15):2899-2917. doi: 10.1007/s00018-020-03460-8. Epub 2020 Feb 1. Cell Mol Life Sci. 2020. PMID: 32008088 Free PMC article. Review.
-
Diversity in requirement of genetic and epigenetic factors for centromere function in fungi.Eukaryot Cell. 2011 Nov;10(11):1384-95. doi: 10.1128/EC.05165-11. Epub 2011 Sep 9. Eukaryot Cell. 2011. PMID: 21908596 Free PMC article. Review.
-
Chromatin dynamics during the cell cycle at centromeres.Nat Rev Genet. 2017 Mar;18(3):192-208. doi: 10.1038/nrg.2016.157. Epub 2017 Jan 31. Nat Rev Genet. 2017. PMID: 28138144 Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases