Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec 2;568(1):129-43.
doi: 10.1016/j.mrfmmm.2004.06.051.

A biological-based model that links genomic instability, bystander effects, and adaptive response

Affiliations

A biological-based model that links genomic instability, bystander effects, and adaptive response

B R Scott. Mutat Res. .

Abstract

This paper links genomic instability, bystander effects, and adaptive response in mammalian cell communities via a novel biological-based, dose-response model called NEOTRANS3. The model is an extension of the NEOTRANS2 model that addressed stochastic effects (genomic instability, mutations, and neoplastic transformation) associated with brief exposure to low radiation doses. With both models, ionizing radiation produces DNA damage in cells that can be associated with varying degrees of genomic instability. Cells with persistent problematic instability (PPI) are mutants that arise via misrepair of DNA damage. Progeny of PPI cells also have PPI and can undergo spontaneous neoplastic transformation. Unlike NEOTRANS2, with NEOTRANS3 newly induced mutant PPI cells and their neoplastically transformed progeny can be suppressed via our previously introduced protective apoptosis-mediated (PAM) process, which can be activated by low linear energy transfer (LET) radiation. However, with NEOTRANS3 (which like NEOTRANS2 involves cross-talk between nongenomically compromised [e.g., nontransformed, nonmutants] and genomically compromised [e.g., mutants, transformants, etc.] cells), it is assumed that PAM is only activated over a relatively narrow, dose-rate-dependent interval (D(PAM),D(off)); where D(PAM) is a small stochastic activation threshold, and D(off) is the stochastic dose above which PAM does not occur. PAM cooperates with activated normal DNA repair and with activated normal apoptosis in guarding against genomic instability. Normal repair involves both error-free repair and misrepair components. Normal apoptosis and the error-free component of normal repair protect mammals by preventing the occurrence of mutant cells. PAM selectively removes mutant cells arising via the misrepair component of normal repair, selectively removes existing neoplastically transformed cells, and probably selectively removes other genomically compromised cells when it is activated. PAM likely involves multiple pathways to apoptosis, with the selected pathway depending on the type of cell to be removed, its cellular environment, and on the nature of the genomic damage.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources