Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec;190(2):414-24.
doi: 10.1016/j.expneurol.2004.05.046.

Evidence that infiltrating neutrophils do not release reactive oxygen species in the site of spinal cord injury

Affiliations

Evidence that infiltrating neutrophils do not release reactive oxygen species in the site of spinal cord injury

R de Castro Jr et al. Exp Neurol. 2004 Dec.

Abstract

The release of reactive oxygen species (ROS) by neutrophils, which infiltrate the region of damage following spinal cord injury (SCI), was investigated to determine if such release is significant following spinal cord injury. The relationship of extracellular levels of hydroxyl radicals and hydrogen peroxide obtained by microdialysis sampling and oxidized protein levels in tissue to neutrophil infiltration following spinal cord injury was examined. Neither of the reactive oxygen species were elevated in the site of spinal cord injury relative to their concentrations in normal tissue at a time (24 h) when the numbers of neutrophils were maximum in the site of injury. Surprisingly, ablation with a neutrophil antiserum actually increased the level of oxidized proteins in Western blots. Thus, our findings are (1) that neutrophils, which infiltrate the site of damage following a spinal cord injury, do not release detectable quantities of reactive oxygen species; and (2) that the presence of neutrophils reduces the concentrations of oxidized proteins in the site of spinal cord injury. Therefore, release of reactive oxygen species by neutrophils does not contribute significantly to secondary damage following spinal cord injury. Reduced levels of oxidized proteins in the presence of neutrophils may reflect removal of damaged tissue by neutrophils.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances