Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec;190(2):525-34.
doi: 10.1016/j.expneurol.2004.08.016.

Caffeine-dependent stimulus-triggered oscillations in the CA3 region of hippocampal slices from rats chronically exposed to lead

Affiliations

Caffeine-dependent stimulus-triggered oscillations in the CA3 region of hippocampal slices from rats chronically exposed to lead

Shui-Jin He et al. Exp Neurol. 2004 Dec.

Abstract

Yoshimura et al. [Yoshimura, H., Sugai, T., Onoda, N., Segami, N., Kato, N., 2002. Age-dependent occurrence of synchronized population oscillation suggestive of a developing functional coupling between NMDA and ryanodine receptors in the neocortex. Dev. Brain Res., 136, 63-68.] have shown that caffeine can elicit synchronized oscillations (10-12 Hz) dependent on calcium-induced calcium release in rat neocortex neurons. In the present work, synchronized oscillations in the CA3 region of rat hippocampus were studied by recording field excitatory postsynaptic potentials (fEPSPs) in vitro. In the presence of 0.1 mM caffeine, in CA3 of 44 of 45 (97.8%) slices from chronic lead-exposed rats, single electrical stimuli triggered a burst of high-frequency oscillations (approximately 230 Hz), whereas in CA3 of caffeine-treated slices from control rats, such oscillations could be elicited in only 2 of 24 (8.3%) slices. The complete (but fully reversible) block of caffeine-dependent oscillations by 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX; 20 microM) indicates that alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors are necessary for the high-frequency synchronized oscillations. 2-Amino-5-phosphonopentanoate (AP-5; 50 micoM) partially reduced the amplitude of caffeine-dependent oscillations without significantly altering their frequency. Caffeine-dependent oscillations could be abolished by application of AP-5 and 3 mM Mg2+ during the initial period of bursting, indicating that N-methyl-D-aspartate (NMDA) receptors play an important role in the generation of oscillations. The Ca2+ chelator ethylene glycol bis-(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA; 5 mM) added in standard artificial cerebrospinal fluid (ACSF) containing 0.1 mM caffeine fully blocked the oscillations. Caffeine-dependent oscillations are insensitive to an antagonist of gamma-aminobutyric acid (GABAA) receptors (10 microM bicuculline), L-type Ca2+ channels (10 muM nicardipine), L-type and N-type voltage-dependent calcium channels (100 microM Cd2)), and T-type Ca2+ channels (100 microM Ni2+). Previous studies have demonstrated that expression and function of NMDA and AMPA receptors are altered in the hippocampus of chronic lead-exposed rats. We propose that caffeine-dependent stimulus-induced oscillations in CA3 area of hippocampus from chronic lead-exposed rats are mainly mediated by the entry of extracellular Ca2+ through NMDA and non-NMDA receptors, without participation of GABAA receptors. Additionally, the underlying mechanisms are also discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types