Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec;231(4):750-7.
doi: 10.1002/dvdy.20244.

Fgf signaling induces posterior neuroectoderm independently of Bmp signaling inhibition

Affiliations
Free article

Fgf signaling induces posterior neuroectoderm independently of Bmp signaling inhibition

Fabian Rentzsch et al. Dev Dyn. 2004 Dec.
Free article

Abstract

Whereas according to the neural default model, neural specification is induced by extracellular inhibitors of bone morphogenetic proteins (Bmps), the role of fibroblast growth factors (Fgfs) during neural induction is heavily debated. Here, we show that, in zebrafish embryos, Bmps and Fgfs play differential roles during the induction and patterning of the anterior vs. the posterior neuroectoderm. Induction of anterior neuroectoderm, giving rise to fore- and midbrain, is accomplished by Bmp inhibition, with Fgfs playing a moderate posteriorizing/patterning role, possibly by blocking Bmp signaling at the level of Smad proteins. In contrast, in the posterior-most neuroectoderm, which is located in marginal regions of the early gastrula embryo to give rise to spinal cord and hindbrain, Fgfs play a neural-inducing rather than a neural-patterning role. This Fgf-dependent posterior neural induction takes place during late blastula and early gastrula stages, after mesoderm has been induced and cannot be blocked by Bmps or the Bmp target gene and downstream effector Delta Np63 alpha, indicating that here, Fgfs act independently of Bmp signaling inhibition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources