Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov 17;126(45):14740-5.
doi: 10.1021/ja048170p.

Relationship of stereochemical and skeletal diversity of small molecules to cellular measurement space

Affiliations

Relationship of stereochemical and skeletal diversity of small molecules to cellular measurement space

Young-kwon Kim et al. J Am Chem Soc. .

Abstract

Systematic and quantitative measurements of the roles of stereochemistry and skeleton-dependent conformational restriction were made using multidimensional screening. We first used diversity-oriented synthesis to synthesize the same number (122) of [10.4.0] bicyclic products (B) and their corresponding monocyclic precursors (M). We measured the ability of these compounds to modulate a broad swath of biology using 40 parallel cell-based assays. We analyzed the results using statistical methods that revealed illuminating relationships between stereochemistry, ring number, and assay outcomes. Conformational restriction by ring-closing metathesis increased the specificity of responses among active compounds and was the dominant factor in global activity patterns. Hierarchical clustering also revealed that stereochemistry was a second dominant factor; whereas the stereochemistry of macrocyclic appendages was a determinant for bicyclic compounds, the stereochemistry of the carbohydrates was a determinant for the monocyclic compounds of global activity patterns. These studies illustrate a quantitative method for measuring stereochemical and skeletal diversity of small molecules and their cellular consequences.

PubMed Disclaimer

Publication types

MeSH terms