Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004;22(6):1085-100.
doi: 10.1634/stemcells.22-6-1085.

Tumor necrosis factor promotes human T-cell development in nonobese diabetic/severe combined immunodeficient mice

Affiliations

Tumor necrosis factor promotes human T-cell development in nonobese diabetic/severe combined immunodeficient mice

Sarit Samira et al. Stem Cells. 2004.

Abstract

A major problem after clinical hematopoietic stem cell transplantations is poor T-cell reconstitution. Studying the mechanisms underlying this concern is hampered, because experimental transplantation of human stem and progenitor cells into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice usually results in low T-lymphocyte reconstitution. Because tumor necrosis factor alpha (TNFalpha) has been proposed to play a role in T-lineage commitment and differentiation in vitro, we investigated its potential to augment human T-cell development in vivo. Administration of TNF to irradiated NOD/SCID mice before transplantation of human mononuclear cells from either cord blood or adult G-CSF-mobilized peripheral blood (MPBL) led 2-3 weeks after transplantation to the emergence of human immature CD4(+)CD8(+) double-positive T-cells in the bone marrow (BM), spleen, and thymus, and in this organ, the human cells also express CD1a marker. One to 2 weeks later, single-positive CD4(+) and CD8(+) cells expressing heterogenous T-cell receptor alpha beta were detected in all three organs. These cells were also capable of migrating through the blood circulation. Interestingly, human T-cell development in these mice was associated with a significant reduction in immature lymphoid human CD19(+) B cells and natural killer progenitors in the murine BM. The human T cells were mostly derived from the transplanted immature CD34(+) cells. This study demonstrates the potential of TNF to rapidly augment human T lymphopoiesis in vivo and also provides clinically relevant evidence for this process with adult MPBL progenitors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms