Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar;288(3):C606-12.
doi: 10.1152/ajpcell.00297.2004. Epub 2004 Nov 10.

Enhanced response to caffeine and 4-chloro-m-cresol in malignant hyperthermia-susceptible muscle is related in part to chronically elevated resting [Ca2+]i

Affiliations
Free article

Enhanced response to caffeine and 4-chloro-m-cresol in malignant hyperthermia-susceptible muscle is related in part to chronically elevated resting [Ca2+]i

José R López et al. Am J Physiol Cell Physiol. 2005 Mar.
Free article

Abstract

Malignant hyperthermia (MH) is a potentially fatal pharmacogenetic syndrome caused by exposure to halogenated volatile anesthetics and/or depolarizing muscle relaxants. We have measured intracellular Ca(2+) concentration ([Ca(2+)](i)) using double-barreled, Ca(2+)-selective microelectrodes in myoballs prepared from skeletal muscle of MH-susceptible (MHS) and MH-nonsusceptible (MHN) swine. Resting [Ca(2+)](i) was approximately twofold in MHS compared with MHN quiescent myoballs (232 +/- 35 vs. 112 +/- 11 nM). Treatment of myoballs with caffeine or 4-chloro-m-cresol (4-CmC) produced an elevation in [Ca(2+)](i) in both groups; however, the concentration required to cause a rise in [Ca(2+)](i) elevation was four times lower in MHS than in MHN skeletal muscle cells. Incubation of MHS cells with the fast-complexing Ca(2+) buffer BAPTA reduced [Ca(2+)](i), raised the concentration of caffeine and 4-CmC required to cause an elevation of [Ca(2+)](i), and reduced the amount of Ca(2+) release associated with exposure to any given concentration of caffeine or 4-CmC to MHN levels. These results suggest that the differences in the response of MHS skeletal myoballs to caffeine and 4-CmC may be mediated at least in part by the chronic high resting [Ca(2+)](i) levels in these cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources