Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Jan;236(1):E70-6.
doi: 10.1152/ajpendo.1979.236.1.E70.

Anion-stimulated ATPase activity of brush border from rat small intestine

Anion-stimulated ATPase activity of brush border from rat small intestine

M H Humphreys et al. Am J Physiol. 1979 Jan.

Abstract

Differential centrifugation of rat small intestinal homogenates produced a crude brush border (BB) fraction that was enriched 15-fold for the marker enzymes, alkaline phosphatase and sucrase; contamination with mitochondrial enzymes, monoamine oxidase and succinate dehydrogenase, was minimal. ATP hydrolysis by this BB fraction was stimulated by addition of several anions to the incubation medium: HCO3 and Cl were equally effective in this regard, with NO3, NO2, SO4, and acetate being less stimulatory. SCN and CNO inhibited ATPase activity, whereas the divalent anion SO3 was stimulatory at low concentrations (less than 25 mM) but inhibitory at 100 mM. Maximum anion stimulation was observed at a Mg concentration of 0.5 mM, and pH optimum was 8.5. Kinetic analysis showed that HCO3 increased the Vmax without altering the Km for ATP; the Ka for this effect of HCO3 was 35 mM. This enzyme activity was completely inhibited by 20 mM L-phenylalanine, 10 mM L-cysteine, and 3 mM EDTA, compounds that also inhibited intestinal alkaline phosphatase. These results demonstrate the presence of anion-stimulated ATPase activity in rat small intestinal brush border and suggest that this activity may be related to intestinal alkaline phosphatase. The role of this enzyme in intestinal transport is not known, but could relate to the regulation of intestinal absorption and secretion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources