Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan 1;302(1):1-10.
doi: 10.1016/j.yexcr.2004.08.013.

Decreased tumorigenicity of c-Myc-transformed fibroblasts expressing active USF2

Affiliations

Decreased tumorigenicity of c-Myc-transformed fibroblasts expressing active USF2

Chungyoul Choe et al. Exp Cell Res. .

Abstract

USF is a small family of basic helix-loop-helix leucine zipper (bHLH-zip) transcription factors with DNA binding specificities similar to that of the c-Myc oncoprotein. Evidence for a role of USF in growth control includes inhibition of c-Myc-dependent cellular transformation in vitro and loss of USF transcriptional activity in many cancer cell lines. However, a direct effect of USF on the tumorigenicity of an established cell line has never been demonstrated. Here, cell lines derived from rat embryo fibroblasts transformed by c-Ha-Ras and either c-Myc or E1A were used as model system to investigate the tumor suppression ability of USF. Overexpression of USF2 stimulated transcription and inhibited colony formation in c-Myc-transformed, but not E1A-transformed, fibroblasts. Stable clones expressing high USF2 levels were constructed from c-Myc-transformed fibroblasts. In two of these clones, overexpressed USF2 did not activate transcription, and there was no significant change in the transformed phenotype. In contrast, a clone that expressed transcriptionally active USF2 exhibited altered morphology and a strongly decreased ability to proliferate in semisolid medium. The ability of these cells to form tumors in nude mice was also decreased by a factor of more than 30 as compared to the parental cell line or cells overexpressing transcriptionally inactive USF2. Cotransfection assays with USF- or Myc-specific dominant-negative mutants indicated that active USF2 inhibited cellular transformation by preventing transcriptional repression by c-Myc.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources