Sequence variation within the dominant amino terminus epitope affects antibody binding and neutralization of human immunodeficiency virus type 1 Tat protein
- PMID: 15542671
- PMCID: PMC524972
- DOI: 10.1128/JVI.78.23.13190-13196.2004
Sequence variation within the dominant amino terminus epitope affects antibody binding and neutralization of human immunodeficiency virus type 1 Tat protein
Abstract
Tat is among the required regulatory genes of human immunodeficiency virus type 1 (HIV-1). Tat functions both within infected cells as a transcription factor and as an extracellular factor that binds and alters bystander cells. Some functions of extracellular Tat can be neutralized by immune serum or monoclonal antibodies. In order to understand the antibody response to Tat, we are defining antibody epitopes and the effects of natural Tat sequence variation on antibody recognition. The dominant Tat epitope in macaque sera is within the first 15 amino acids of the protein amino terminus. Together with a subdominant response to amino acids 57 to 60, these two regions account for most of the macaque response to linear Tat epitopes and both regions are also sites for the binding of neutralizing antibodies. However, the dominant and subdominant epitope sequences differ among virus strains, and this natural variation can preclude antibody binding and Tat neutralization. We also examined serum samples from 31 HIV-positive individuals that contained Tat binding antibodies; 23 of the 31 sera recognized the amino terminus peptide. Similar to binding in macaques, human antibody binding to the amino terminus was affected by variations at positions 7 and 12, sequences that are distinct for clade B compared to other viral clades. Tat-neutralizing antibodies to the dominant amino terminus epitope are affected by HIV clade variation.
Figures


Similar articles
-
Tat-neutralizing antibodies in vaccinated macaques.J Virol. 2003 Mar;77(5):3157-66. doi: 10.1128/jvi.77.5.3157-3166.2003. J Virol. 2003. PMID: 12584340 Free PMC article.
-
Epitopes for natural antibodies of human immunodeficiency virus (HIV)-negative (normal) and HIV-positive sera are coincident with two key functional sequences of HIV Tat protein.Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7719-23. doi: 10.1073/pnas.90.16.7719. Proc Natl Acad Sci U S A. 1993. PMID: 7689227 Free PMC article.
-
Sequence conservation and antibody cross-recognition of clade B human immunodeficiency virus (HIV) type 1 Tat protein in HIV-1-infected Italians, Ugandans, and South Africans.J Infect Dis. 2003 Oct 15;188(8):1171-80. doi: 10.1086/378412. Epub 2003 Sep 30. J Infect Dis. 2003. PMID: 14551888
-
Generation and characterization of neutralizing human monoclonal antibodies against human immunodeficiency virus type 1 Tat antigen.J Virol. 2004 Apr;78(7):3792-6. doi: 10.1128/jvi.78.7.3792-3796.2004. J Virol. 2004. PMID: 15016898 Free PMC article.
-
Fab'-induced folding of antigenic N-terminal peptides from intrinsically disordered HIV-1 Tat revealed by X-ray crystallography.J Mol Biol. 2011 Jan 7;405(1):33-42. doi: 10.1016/j.jmb.2010.10.033. Epub 2010 Oct 28. J Mol Biol. 2011. PMID: 21035463 Review.
Cited by
-
HIV immune complexes prevent excitotoxicity by interaction with NMDA receptors.Neurobiol Dis. 2013 Jan;49:169-76. doi: 10.1016/j.nbd.2012.08.013. Epub 2012 Aug 25. Neurobiol Dis. 2013. PMID: 22940423 Free PMC article.
-
Novel biopanning strategy to identify epitopes associated with vaccine protection.J Virol. 2013 Apr;87(8):4403-16. doi: 10.1128/JVI.02888-12. Epub 2013 Feb 6. J Virol. 2013. PMID: 23388727 Free PMC article.
-
The grafting of universal T-helper epitopes enhances immunogenicity of HIV-1 Tat concurrently improving its safety profile.PLoS One. 2014 Dec 22;9(12):e114155. doi: 10.1371/journal.pone.0114155. eCollection 2014. PLoS One. 2014. PMID: 25531437 Free PMC article.
-
Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4(+) T lymphocytes.PLoS Pathog. 2013;9(5):e1003338. doi: 10.1371/journal.ppat.1003338. Epub 2013 May 2. PLoS Pathog. 2013. PMID: 23658523 Free PMC article. Clinical Trial.
-
Molecular characterization of full-length Tat in HIV-1 subtypes B and C.Bioinformation. 2015 Mar 31;11(3):151-60. doi: 10.6026/97320630011151. eCollection 2015. Bioinformation. 2015. PMID: 25914449 Free PMC article.
References
-
- Allen, T. M., L. Mortara, B. R. Mothe, M. Liebl, P. Jing, B. Calore, M. Piekarczyk, R. Ruddersdorf, D. H. O'Connor, X. Wang, C. Wang, D. B. Allison, J. D. Altman, A. Sette, R. C. Desrosiers, G. Sutter, and D. I. Watkins. 2002. Tat-vaccinated macaques do not control simian immunodeficiency virus SIVmac239 replication. J. Virol. 76:4108-4112. - PMC - PubMed
-
- Allen, T. M., D. H. O'Connor, P. Jing, J. L. Dzuris, B. R. Mothe, T. U. Vogel, E. Dunphy, M. E. Liebl, C. Emerson, N. Wilson, K. J. Kunstman, X. Wang, D. B. Allison, A. L. Hughes, R. C. Desrosiers, J. D. Altman, S. M. Wolinsky, A. Sette, and D. I. Watkins. 2000. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature 407:386-390. - PubMed
-
- Bayer, P., M. Kraft, A. Ejchart, M. Westendorp, R. Frank, and P. Rosch. 1995. Structural studies of HIV-1 Tat protein. J. Mol. Biol. 247:529-535. - PubMed
-
- Belliard, G., A. Romieu, J. F. Zagury, H. Dali, O. Chaloin, R. Le Grand, E. Loret, J. P. Briand, B. Roques, C. Desgranges, and S. Muller. 2003. Specificity and effect on apoptosis of Tat antibodies from vaccinated and SHIV-infected rhesus macaques and HIV-infected individuals. Vaccine 21:3186-3199. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources