Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path
- PMID: 15543158
- DOI: 10.1038/nsmb856
Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path
Abstract
The Escherichia coli OxyR transcription factor is activated by cellular hydrogen peroxide through the oxidation of reactive cysteines. Although there is substantial evidence for specific disulfide bond formation in the oxidative activation of OxyR, the presence of the disulfide bond has remained controversial. By mass spectrometry analyses and in vivo labeling assays we found that oxidation of OxyR in the formation of a specific disulfide bond between Cys199 and Cys208 in the wild-type protein. In addition, using time-resolved kinetic analyses, we determined that OxyR activation occurs at a rate of 9.7 s(-1). The disulfide bond-mediated conformation switch results in a metastable form that is locally strained by approximately 3 kcal mol(-1). On the basis of these observations we conclude that OxyR activation requires specific disulfide bond formation and that the rapid kinetic reaction path and conformation strain, respectively, drive the oxidation and reduction of OxyR.
Similar articles
-
A combined molecular dynamics simulation and quantum chemical study on the mechanism for activation of the OxyR transcription factor by hydrogen peroxide.Org Biomol Chem. 2006 Sep 21;4(18):3468-78. doi: 10.1039/b604602a. Epub 2006 Aug 8. Org Biomol Chem. 2006. PMID: 17036142
-
In vivo oxidation-reduction kinetics of OxyR, the transcriptional activator for an oxidative stress-inducible regulon in Escherichia coli.FEBS Lett. 1999 Aug 20;457(1):90-2. doi: 10.1016/s0014-5793(99)01013-3. FEBS Lett. 1999. PMID: 10486570
-
Structural basis of the redox switch in the OxyR transcription factor.Cell. 2001 Apr 6;105(1):103-13. doi: 10.1016/s0092-8674(01)00300-2. Cell. 2001. PMID: 11301006
-
Redox-operated genetic switches: the SoxR and OxyR transcription factors.Trends Biotechnol. 2001 Mar;19(3):109-14. doi: 10.1016/s0167-7799(00)01542-0. Trends Biotechnol. 2001. PMID: 11179804 Review.
-
Pathways of disulfide bond formation in Escherichia coli.Int J Biochem Cell Biol. 2006;38(7):1050-62. doi: 10.1016/j.biocel.2005.12.011. Epub 2006 Jan 11. Int J Biochem Cell Biol. 2006. PMID: 16446111 Review.
Cited by
-
Synergistic effects of ascorbate and sorafenib in hepatocellular carcinoma: New insights into ascorbate cytotoxicity.Free Radic Biol Med. 2016 Jun;95:308-322. doi: 10.1016/j.freeradbiomed.2016.03.031. Epub 2016 Mar 30. Free Radic Biol Med. 2016. PMID: 27036367 Free PMC article.
-
Structural details of the OxyR peroxide-sensing mechanism.Proc Natl Acad Sci U S A. 2015 May 19;112(20):6443-8. doi: 10.1073/pnas.1424495112. Epub 2015 Apr 30. Proc Natl Acad Sci U S A. 2015. PMID: 25931525 Free PMC article.
-
Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine.J Biol Chem. 2013 May 17;288(20):14170-14177. doi: 10.1074/jbc.M113.460881. Epub 2013 Mar 29. J Biol Chem. 2013. PMID: 23543738 Free PMC article.
-
The redox biochemistry of protein sulfenylation and sulfinylation.J Biol Chem. 2013 Sep 13;288(37):26480-8. doi: 10.1074/jbc.R113.467738. Epub 2013 Jul 16. J Biol Chem. 2013. PMID: 23861405 Free PMC article. Review.
-
Bacillithiol, a new player in bacterial redox homeostasis.Antioxid Redox Signal. 2011 Jul 1;15(1):123-33. doi: 10.1089/ars.2010.3562. Epub 2010 Dec 17. Antioxid Redox Signal. 2011. PMID: 20712413 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases