Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan 6;24(1):77-89.
doi: 10.1038/sj.onc.1208145.

Manganese superoxide dismutase overexpression inhibits the growth of androgen-independent prostate cancer cells

Affiliations

Manganese superoxide dismutase overexpression inhibits the growth of androgen-independent prostate cancer cells

Sujatha Venkataraman et al. Oncogene. .

Abstract

This study investigates the role of the antioxidant enzyme manganese superoxide dismutase (MnSOD) in androgen-independent human prostate cancer (PC-3) cells' growth rate in vitro and in vivo. MnSOD levels were found to be lower in parental PC-3 cells compared to nonmalignant, immortalized human prostate epithelial cells (P69SV40T). To unravel the role of MnSOD in the prostate cancer phenotype, PC-3 cells were stably transfected with MnSOD cDNA plasmid. The MnSOD protein and activity levels in clones overexpressing MnSOD were increased seven- to eightfold. These cell lines showed elongated cell doubling time, reduced anchorage-independent growth in soft agar compared to parental PC-3 (Wt) cells, and reduced growth rate of PC-3 tumor xenografts in athymic nude mice. Flow cytometric studies showed an increase in membrane potential in the MnSOD-overexpressing clone (Mn32) compared to Wt and Neo cells. Also, production of extracellular H(2)O(2) was increased in the MnSOD-overexpressing clones. As determined by DNA cell cycle analysis, the proportion of cells in G(1) phase was enhanced by MnSOD overexpression. Therefore, MnSOD not only regulates cell survival but also affects PC-3 cell proliferation by retarding G(1) to S transition. Our results are consistent with MnSOD being a tumor suppressor gene in human prostate cancer.

PubMed Disclaimer

Publication types