Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec;27(4):429-41.
doi: 10.1002/gepi.20039.

SNPs, haplotypes, and model selection in a candidate gene region: the SIMPle analysis for multilocus data

Affiliations

SNPs, haplotypes, and model selection in a candidate gene region: the SIMPle analysis for multilocus data

David V Conti et al. Genet Epidemiol. 2004 Dec.

Abstract

Modern molecular techniques make discovery of numerous single nucleotide polymorphims (SNPs) in candidate gene regions feasible. Conventional analysis relies on either independent tests with each variant or the use of haplotypes in association analysis. The first technique ignores the dependencies between SNPs. The second, though it may increase power, often introduces uncertainty by estimating haplotypes from population data. Additionally, as the number of loci expands for a haplotype, ambiguity in interpretation increases for determining the underlying genetic components driving a detected association. Here, we present a genotype-level analysis to jointly model the SNPs via a SNP interaction model with phase information (SIMPle) to capture the underlying haplotype structure. This analysis estimates both the risk associated with each variant and the importance of phase between pairwise combinations of SNPs. Thus, rather than selecting between genotype- or haplotype-level approaches, the SIMPle method frames the analysis of multilocus data in a model selection paradigm, the aim to determine which SNPs, phase terms, and linear combinations best describe the relation between genetic variation and a trait of interest. To avoid unstable estimation due to sparse data and to incorporate both the dependencies among terms and the uncertainty in model selection, we propose a Bayes model averaging procedure. This highlights key SNPs and phase terms and yields a set of best representative models. Using simulations, we demonstrate the utility of the SIMPle model to identify crucial SNPs and underlying haplotype structures across a variety of causal models and genetic architectures.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources