SNPs, haplotypes, and model selection in a candidate gene region: the SIMPle analysis for multilocus data
- PMID: 15543635
- DOI: 10.1002/gepi.20039
SNPs, haplotypes, and model selection in a candidate gene region: the SIMPle analysis for multilocus data
Abstract
Modern molecular techniques make discovery of numerous single nucleotide polymorphims (SNPs) in candidate gene regions feasible. Conventional analysis relies on either independent tests with each variant or the use of haplotypes in association analysis. The first technique ignores the dependencies between SNPs. The second, though it may increase power, often introduces uncertainty by estimating haplotypes from population data. Additionally, as the number of loci expands for a haplotype, ambiguity in interpretation increases for determining the underlying genetic components driving a detected association. Here, we present a genotype-level analysis to jointly model the SNPs via a SNP interaction model with phase information (SIMPle) to capture the underlying haplotype structure. This analysis estimates both the risk associated with each variant and the importance of phase between pairwise combinations of SNPs. Thus, rather than selecting between genotype- or haplotype-level approaches, the SIMPle method frames the analysis of multilocus data in a model selection paradigm, the aim to determine which SNPs, phase terms, and linear combinations best describe the relation between genetic variation and a trait of interest. To avoid unstable estimation due to sparse data and to incorporate both the dependencies among terms and the uncertainty in model selection, we propose a Bayes model averaging procedure. This highlights key SNPs and phase terms and yields a set of best representative models. Using simulations, we demonstrate the utility of the SIMPle model to identify crucial SNPs and underlying haplotype structures across a variety of causal models and genetic architectures.
Similar articles
-
Tag SNP selection for association studies.Genet Epidemiol. 2004 Dec;27(4):365-74. doi: 10.1002/gepi.20028. Genet Epidemiol. 2004. PMID: 15372618 Review.
-
[How about the uncertainty in the haplotypes in the population-based KORA studies?].Gesundheitswesen. 2005 Aug;67 Suppl 1:S132-6. doi: 10.1055/s-2005-858253. Gesundheitswesen. 2005. PMID: 16032531 German.
-
Haplotype sharing analysis with SNPs in candidate genes: the Genetic Analysis Workshop 12 example.Genet Epidemiol. 2003 Jan;24(1):68-73. doi: 10.1002/gepi.10207. Genet Epidemiol. 2003. PMID: 12508257
-
Direct analysis of unphased SNP genotype data in population-based association studies via Bayesian partition modelling of haplotypes.Genet Epidemiol. 2005 Sep;29(2):91-107. doi: 10.1002/gepi.20080. Genet Epidemiol. 2005. PMID: 15940704
-
The role of haplotypes in candidate gene studies.Genet Epidemiol. 2004 Dec;27(4):321-33. doi: 10.1002/gepi.20025. Genet Epidemiol. 2004. PMID: 15368617 Review.
Cited by
-
Two-stage design of sequencing studies for testing association with rare variants.Hum Hered. 2011;71(4):209-20. doi: 10.1159/000328193. Epub 2011 Jul 2. Hum Hered. 2011. PMID: 21734405 Free PMC article.
-
Single-marker and two-marker association tests for unphased case-control genotype data, with a power comparison.Genet Epidemiol. 2010 Jan;34(1):67-77. doi: 10.1002/gepi.20436. Genet Epidemiol. 2010. PMID: 19557751 Free PMC article.
-
A Bayesian Partitioning Model for the Detection of Multilocus Effects in Case-Control Studies.Hum Hered. 2015;79(2):69-79. doi: 10.1159/000369858. Epub 2015 Jun 3. Hum Hered. 2015. PMID: 26044550 Free PMC article.
-
A probabilistic method for identifying rare variants underlying complex traits.BMC Genomics. 2013;14 Suppl 1(Suppl 1):S11. doi: 10.1186/1471-2164-14-S1-S11. Epub 2013 Jan 21. BMC Genomics. 2013. PMID: 23369113 Free PMC article.
-
A Bayesian integrative genomic model for pathway analysis of complex traits.Genet Epidemiol. 2012 May;36(4):352-9. doi: 10.1002/gepi.21628. Epub 2012 Mar 28. Genet Epidemiol. 2012. PMID: 22460780 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources